首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17496篇
  免费   1334篇
  国内免费   121篇
林业   1718篇
农学   717篇
基础科学   108篇
  3964篇
综合类   1135篇
农作物   893篇
水产渔业   1582篇
畜牧兽医   6780篇
园艺   437篇
植物保护   1617篇
  2024年   30篇
  2023年   164篇
  2022年   245篇
  2021年   444篇
  2020年   495篇
  2019年   480篇
  2018年   822篇
  2017年   821篇
  2016年   777篇
  2015年   614篇
  2014年   723篇
  2013年   1093篇
  2012年   1416篇
  2011年   1328篇
  2010年   784篇
  2009年   643篇
  2008年   995篇
  2007年   949篇
  2006年   771篇
  2005年   795篇
  2004年   697篇
  2003年   678篇
  2002年   562篇
  2001年   387篇
  2000年   356篇
  1999年   293篇
  1998年   111篇
  1997年   90篇
  1996年   64篇
  1995年   87篇
  1994年   54篇
  1993年   44篇
  1992年   94篇
  1991年   77篇
  1990年   78篇
  1989年   72篇
  1988年   67篇
  1987年   50篇
  1986年   56篇
  1985年   58篇
  1984年   49篇
  1983年   41篇
  1981年   24篇
  1979年   44篇
  1974年   27篇
  1972年   26篇
  1971年   27篇
  1970年   30篇
  1969年   32篇
  1968年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   
992.
This paper presents a comparative study of the performance of ferrate(VI), FeO 4 2? , and ferric, Fe(III), towards wastewater treatment. The ferrate(VI) was produced by electrochemical synthesis, using steel electrodes in a 16 M NaOH solution. Domestic wastewater collected from Hailsham North Wastewater Treatment Works was treated with ferrate(VI) and ferric sulphate (Fe(III)). Samples were analysed for suspended solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and P removal. Results for low doses of Fe(VI) were validated via a reproducibility study. Removal of phosphorous reached 40% with a Fe(VI) dose as low as 0.01 mg/L compared to 25% removal with 10 mg/L of Fe(III). For lower doses (<1 mg/L as Fe), Fe(VI) can achieve between 60% and 80% removals of SS and COD, but Fe(III) performed even not as well as the control sample where no iron chemical was dosed. The ferrate solution was found to be stable for a maximum of 50 min, beyond which Fe(VI) is reduced to less oxidant species. This provided the maximum allowed storage time of the electrochemically produced ferrate(VI) solution. Results demonstrated that low addition of ferrate(VI) leads to good removal of P, BOD, COD and suspended solids from wastewater compared to ferric addition and further studies could bring an optimisation of the dosage and treatment.  相似文献   
993.
The Barigüi River watershed is located in the metropolitan region of Curitiba, Southern Brazil, passing through several neighboring counties. In recent years, due to growth and disorderly occupation along the river, in addition to lack of sanitation, the Barigüi River suffered a very large inflow of untreated domestic wastewater. Current programs to monitor the watershed use traditional physical–chemical parameters. Here, the presence of some molecular tracers found in domestic effluents was investigated, such as caffeine and coprostanol at some selected sites in Barigüi River. Caffeine is highly soluble in water and its presence in water bodies is due to the disposal of untreated sewage. Caffeine is eliminated in the urine (approximately 0.5% to 10% of the consumption). The samples were collected in three campaigns, two in dry weather and another during a week in the rainy season. The results showed that caffeine concentration ranged between zero and 753.5 μg g?1. Higher values were found on rainy days. Caffeine showed a positive correlation between BOD and nitrate; it also showed a positive correlation with coprostanol, a fecal biomarker. Finally, caffeine has been shown to be a good parameter to determine the contamination by domestic wastewater.  相似文献   
994.
This study was carried out in order to assess both the deposition of heavy metal and nitrogen in a mountain ecosystem with low levels of metal deposition and its possible interactions with factors such as lithology and topography. For this purpose, samples of Hypnum cupressiforme Hedw. and topsoils were collected in a forest catchment within Bertiz Natural Park, an International Cooperative Programme on Integrated Monitoring site. Trace metals levels in mosses can be considered low compared with values reported elsewhere in Europe, and the dust soil mineral particles seemed to be the main source of these values. Only Cd and Hg presented external inputs, probably with an anthropic origin, for mosses according to the enrichment factor values, whereas historical pollution-related deposition in soils was determined for Pb, Cu, and Ni, attending to their total/extractable ratio.  相似文献   
995.
In the present study, the growth and the Cu2+accumulation by roots, shoots and leaves of Zea mays were examined using copper sulphate in the range of 10?4 to 10?2 M. Plants of Z. mays did not show inhibition of growth in the presence of 10?4 to 10?2 M Cu2+; however, it was observed growth effects on root when different Cu2+ solution concentrations were used. Only the seedlings exposed to 10?2 M exhibited substantial root growth reduction, yielding only 56% of length with respect to the control. Seedlings exposed to 10?4 M Cu2+ exhibited 16% and 42% growth increase in shoots and leaves, respectively, when compared with the controls. The seedlings treated with 10?3 and 10?2 M Cu2+ were inhibited in shoot and leaf growth. The fresh weights in roots, shoots and leaves significantly decreased at 10?2 M Cu2+. The tolerance index, based on root length, was not significantly different for the three different treatments with copper. However, the total accumulation rate was very low at 10?4 and 10?3 M compared to 10?2 Cu treatments. The capacity of copper accumulation by roots, shoots and leaves of Z. mays plants increased concomitant to the copper concentration, arriving to 382 times more in roots, 157 in shoots and only 16 in leaves, all compared to the controls. Cu could be accumulated by roots, shoots and leaves when the initial concentrations were 10?3 and 10?4 M. However, when it was 10?2 M, the metal could not be accumulated by leaf and shoot levels; the roots could increase their copper accumulation capacity three times compared to the control. Z. mays has potential ability to accumulate Cu without being overly sensitive to Cu toxicity.  相似文献   
996.
Sorption equilibrium of phenol and aniline onto the granular activated carbon and hyperreticulated un-functionalized polymeric resin (MN200) was investigated in single and binary component aqueous systems. Higher loading was obtained for aniline than phenol onto both sorbents, which is probably due to hydrophobic difference between both solutes and the greater electronic density of the aromatic ring of the aniline. Granular activated carbon reported larger uptake than resin MN200 for both solutes, which may be attributed to the better physical properties of the granular activated carbon, for instance, larger surface area. The experimental sorption could be properly described by the Langmuir and Freundlich isotherms. Five models for predicting the binary equilibrium sorption isotherm were compared in order to determine the best fit model to correlate binary experimental data: the extended Langmuir isotherm with and without a constant interaction factor, a simplified model based on the single equilibrium factors, the empirical extended Freundlich isotherm and the modified extended Langmuir equation, which considers the synergistic interactions between sorbate–sorbate and not only the competition between them defined by the extended Langmuir model. The modified extended Langmuir model provides the best agreement between predicted and experimental data indicating that the synergistic interactions between solutes play an important role in the binary phenol/aniline sorption system.  相似文献   
997.
Air pollution can be a problem in industrial processes, but monitoring and controling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U), and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U, and Ta dissolution factors in vitro were obtained using the Gamble solution (simulant lung fluid, SLF), particle induced X-ray emission, and alpha spectrometry as analytical techniques. Ta, Th, and U are present in the pyrochlore crystal lattice as oxide; however, they have shown different dissolution parameters. The rapid dissolution fraction (f r), rapid dissolution rate (λ r), slow dissolution rate (f s), and slow dissolution fraction (λ s) measured for tantalum oxide were equal to 0.1 and 0.45 and 0.00007 day?1, respectively. For uranium oxide, f r was equal to 0.05, λ r was equal to 1.1 day?1, and λ s was equal to 0.000068 day?1. For thorium oxide, f r was 0.025, λ r was 1.5 day?1, and λ s was 0.000065 day?1. These results show that chemical behavior of these three compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore.  相似文献   
998.
Copper biosorption onto chemically modified biomass of marine alga Sargassum filipendula was investigated in a batch reactor and a fixed bed column. Experiments were carried out in the batch reactor to obtain kinetic and equilibrium data and to assess the copper desorption efficiency of different eluent solutions. The pseudo-first-order, pseudo-second-order, and Langmuir kinetic models were used to correlate kinetic data. The experimental data fitted well to the pseudo first order and Langmuir kinetic models. Langmuir and Freundlich models were applied to describe the equilibrium data obtained at a fixed temperature of 30°C and at pH values of 3.0, 4.0, 5.0, and 6.0. The maximum capacities of copper biosorption onto the algal biomass were 1.43, 1.59, 2.40, and 2.36 mequiv./g at pH 3.0, 4.0, 5.0, and 6.0, respectively. The efficiencies of two eluent solutions (calcium chloride and hydrochloric acid) for copper removal from the biomass were evaluated at different concentrations (0.1, 0.2, 0.5, and 1.0 mol/L). The efficiencies of the calcium chloride solutions varied from 1% to 14%, while efficiencies varying from 95% to 99% were obtained when hydrochloric acid solutions were applied. Three adsorption/desorption cycles were carried out in a fixed bed column using 0.1 mol/L hydrochloric acid as eluent solution. The results showed that an increase in the number of cycles led to a reduction in the adsorption capacity of the alga. The desorbed copper fraction presented no significant variation, remaining around 63% in the three adsorption/desorption cycles.  相似文献   
999.
Mining wastes may pose risk nearby urban and agricultural areas. We investigated a lettuce crop land close to a former capped mine tailing in order to determinate the metal uptake by crops. Soil plot sampling design within the crop area and two transects along the tailing were performed. In addition, lettuces (root and leaves) were analyzed after transplant and harvest. The results showed a pH of around 7–8 for all the soil samples. Total metal concentrations were as follows: 190–510 mg kg?1 Pb, 13–21 mg kg?1 Cu, and 210–910 mg kg?1 Zn. Diethylene triamine pentaacetic acid-extractable Pb was around 18% of the total Pb in some samples. Transects along the base and on the plateau of the tailing showed high metal concentrations of Pb (up to 5,800 mg kg?1) and Zn (up to 4,500 mg kg?1), indicating that capping layer had been eroded. Lettuce leaves showed Pb concentrations within standard for human health (<0.3 mg kg?1 in fresh weight). For essential micronutrients such as Cu and Zn, leaves had optimal content (10–28 mg kg?1 Cu, 60–85 mg kg?1 Zn). A continued monitoring in metal uptake is needed in crop lands close to mining wastes in order to prevent risks in food safety. Capped tailings must be monitored and rehabilitation works performed from time to time.  相似文献   
1000.

Within-field variations in plant-available soil nitrogen (N) are likely to be affected by differences in soil characteristics. To study this, a 3- year field investigation was conducted during 1998-2000 on a 15 ha arable field in Sweden with considerable within-field soil texture variability. In 34 plots soil N uptake by crops, net nitrogen mineralization (Nm) during the growing season and soil mineral N in spring and shortly after harvest were determined. Beside these parameters, topography, soil organic matter content (SOM), clay content, pH(H 2 O) and grain yield were recorded. The variations in Nm were considerably large both within the field and between years. The within-field variation in Nm could partly be explained by the variation in SOM and clay content (adjusted coefficient of determination = 0.23, P <0.001). The pattern in Nm differed between years, partly because of seasonal variations in soil moisture. For these reasons, the pattern of Nm is difficult to predict without seasonal adjustments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号