In recent years, organic agriculture has been receiving greater attention because of the various problems like deterioration in soil health and environmental quality under conventional chemical‐intensive agriculture. However, little information is available on the comparative study related to the impact of use of mineral fertilizers and organic manures on the soil quality and productivity. A long‐term field experiment was initiated in 2001 to monitor some of the important soil‐quality parameters and productivity under soybean–wheat crop rotation. The treatments consisted of 0, 30, and 45 kg N ha–1 for soybean and of 0, 120, and 180 kg N ha–1 for wheat. The entire amount of N was supplied to both the crops through urea and farmyard manure (FYM) alone or in combination at 1:1 ratio. Results indicated that Walkley‐and‐Black C (WBC; chromic acid–oxidizable) exhibited a marginal increase under only organic treatments as compared to control treatment (without fertilizers and manure) after completion of five cropping cycles. In case of labile‐C (KMnO4‐oxidizable) content in soil, relatively larger positive changes were recorded under organic, mixed inputs (integrated) and mineral fertilizers as compared to WBC. Maximum improvement in the values of C‐management index (CMI), a measure of soil quality was recorded under organic (348–362), followed by mixed inputs (268–322) and mineral fertilizers (198–199) as compared to the control treatment after completion of five cropping cycles. Similarly there was a substantial increase in KCl‐extractable N; in Olsen‐P; as well as in DTPA‐extractable Zn, Fe, and Mn under organic treatments. Although labile soil C positively contributed to the available N, P, K, Zn, Fe, and Mn contents in soil, it did not show any relationship with the grain yield of wheat. After completion of the sixth cropping cycle, organic treatments produced 23% and 39% lower grain yield of wheat as compared to that under urea‐treated plots. Relatively higher amount of mineral N in soil at critical growth stages and elevated N content in plant under mineral‐fertilizer treatments compared to FYM treatments were responsible for higher yield of wheat under mineral fertilizers. 相似文献
Cornus mas, Cornus officinalis, Cornus controversa, and Cornus kousa (Cornaceae) bear edible fruits that are consumed in parts of Europe and Asia. This study undertook the investigation of the presence and levels of anthocyanins in the fruits of these Cornus species by HPLC. The anthocyanins present in Cornelian cherries, C. mas, are delphinidin 3-O-beta-galactopyranoside (1), cyanidin 3-O-beta-galactopyranoside (2), and pelargonidin 3-O-beta-galactopyranoside (3). C. officinalis contains only anthocyanins 1-3, similar to C. mas, but in different proportions. However, C. controversa contains anthocyanins 1-3 among other anthocyanins, but Chinese dogwood, C. kousa, did not contain 1-3. The contents of pure anthocyanins 1, 2, and 3 in 1 kg of fresh fruits of C. mas, C. officinalis, and C. controversa were 280, 1079, and 710 ppm; 11, 77, and 230 ppm; and 600, 1000, and 700 ppm, respectively. In cyclooxygenase (COX)-I and -II enzyme inhibitory assays, anthocyanins 1-3 (all 40 microM) showed activities of 9.2 and 11.7%; 7.6 and 12.4%; and 5.3 and 7.8%, respectively, compared to Naproxen (54.3 and 41.3%; 10 microM), ibuprofen (47.5 and 39.8%; 10 microM), Celebrex (46.2 and 66.3%; 1.67 ppm), and Vioxx (23.8 and 88.1%, 1.67 ppm). In the antioxidant assay, anthocyanins 1-3 (all 40 microM) showed activities of 70.2, 60.1, and 40.3%, respectively. At 10 microM concentration, commercial synthetic antioxidants tert-butylhydroquinone, butylated hydroxytoluene, butylated hydroxyanisole, and vitamin E gave 83.2, 79.7, 82.1, and 10.2% of antioxidant activity, respectively. 相似文献
A phenological study was conducted to determine the impact of harvest maturity on the immune-modulating properties of Echinacea purpurea. The aerial parts of this plant were collected during seven stages of development and were assayed for a common botanical marker for this species, cichoric acid. Plants of selected development stages were also assayed for total polysaccharides and compared for their immune-modulating effects on the THP-1 monocyte/macrophage cell line by means of a gene expression study. Although the concentration of cichoric acid did not change significantly during the course of the study, stage 1 (advanced vegetative) had the highest concentration of total polysaccharides and exhibited the most potent induction activity on immune-modulating cytokines such as interferon-gamma and tumor necrosis factor-alpha. These findings suggest that the use of gene expression may be an effective tool not only to standardize botanical extracts but also to optimize harvest time. 相似文献
The aim of the study was to evaluate the degradation and persistence of 2-amino 4-chloro 6-methyl pyrimidine (AM), nitrification inhibitor at 1 and 2 µg g?1 application rates in soil. The extraction of AM was done by QuEChER’s (Quick, Easy. Cheap. Rugged and Safe) method and the quantitative analysis by high-performance liquid chromatography (HPLC). AM decreased with time at both the levels of application with the decline being faster in the beginning up to 7 d. Dissipation of AM occurred in a single phase with the persistence data fitting well to the first-order kinetics. Half-lives of AM were determined to be 14.33 and 16.7 d at 1 and 2 µg g–1 levels application rates. Since AM remains effective for an adequate period of time, it can be used for increasing efficiency of nitrogenous fertilizers in rice–wheat cropping systems as well as a safeguard for controlling environmental pollution in subtropical soils. 相似文献
Scarcity of water and emission of greenhouse gases (GHGs) are the two key environmental issues affecting crop production in India.Reducing the carbon footprint (CF) and water footprint (WF) of crop production can help to mitigate the environmental hazards that stem from GHG emissions and water scarcity.The CFs and WFs of three major cereal crops,rice,wheat,and maize,were estimated for the year 2014 under the environmental conditions in India,based on national statistics and other data sources.To... 相似文献
The contribution of an earthworm species ( Amynthas vittatus ) to the increase of the nitrogen content of soil was examined. Three specimens of adult earthworms were introduced into 300 g of soil (Gray Lowland soil, silty clay) supplemented with 1% carboxymethyl cellulose in a container and incubated for 32 d at 22°C in the dark. The contents of total-N, NH4-N and NO3-N, and the population of aerobic nitrogen-fixing bacteria in soil significantly increased after incubation with the earthworms, while the natural abundance of 15N (δ15N) in soil decreased. The amount of nitrogen in the earthworms did not decrease during the incubation in the microcosm. Both acetylene reduction activity of the microcosm and incorporation of 15N to soil from atmospheric 15N2 were significantly enhanced by the introduction of the earthworms into soil, though the observed increment of nitrogen in soil was much higher than the estimated one based on the nitrogen-fixing activity. The results obtained in the present study indicated that the earthworms increased the nitrogen content of soil, presumably due to the enhancement of the nitrogen-fixing activity of the soil from the microcosm by the earthworms. 相似文献
Nitrate reductase activity (NRA) was studied in pea, a C3 plant, and sorghum, a C4 plant, at various stages of growth and development. Influence of moisture stress and nitrogen application was also observed since these factors have profound influence on growth and development.
In pea, NRA was maximum at pod maturity stage and minimum at flowering stage. In sorghum plant there was gradual increase in NRA upto grain formation followed by a fall in activity at maturity.
Nitrogen treatment as nitrate and ammonia significantly increased nitrate reductase activity over control in both pea and sorghum. Treatment with potassium nitrate was found to stimulate more NRA in pea than with ammonium sulphate. In sorghum, both forms of nitrogen did not differ much in their influence on NRA.
Influence of moisture stress in reducing NRA was more clear in sorghum, a C4 plant than in pea, a C3 plant. In general, control plants recorded low NRA in both the crops when compared to nitrogen treated plants except at pod formation stage in pea. 相似文献
Pale malts were prepared using standard and rapid kilning regimes that differed in the temperature and moisture profiles in the kiln. Samples were taken over the last 9 h of kilning, that is, at 18, 20, 22, 25, and 27 h. Antioxidant activity, assessed by redox potential, scavenging of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS*+), and ferric reducing/antioxidant power (FRAP), increased at moisture levels below 6.7% for both regimes. The 27 h malt exposed to the rapid regime (moisture content of 4.8%) had a higher activity than the 27 h standard regime sample (moisture content of 4.8%). None of the malts scavenged oxygen. Pro-oxidant activity profiles were different for the malts obtained using each regime and, at 27 h, the rapid procedure gave malt with higher activity. Levels of (+)-catechin and ferulic acid (the most abundant phenolic compounds identified) generally increased as the moisture content of malt fell below 6.7%. Differences in antioxidant and pro-oxidant activities of the 27 h malts are partly attributed to the Maillard reaction, as evidenced by lower L* and higher b* values and higher levels of Maillard-derived flavor compounds, in the sample obtained by the rapid procedure. Levels of lipid-derived flavor compounds were significantly higher after 27 h of kilning using the rapid procedure. 相似文献