首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   26篇
林业   22篇
农学   15篇
基础科学   6篇
  139篇
综合类   27篇
农作物   22篇
水产渔业   34篇
畜牧兽医   157篇
园艺   16篇
植物保护   44篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   9篇
  2020年   15篇
  2019年   21篇
  2018年   18篇
  2017年   19篇
  2016年   23篇
  2015年   15篇
  2014年   15篇
  2013年   22篇
  2012年   34篇
  2011年   31篇
  2010年   21篇
  2009年   20篇
  2008年   32篇
  2007年   25篇
  2006年   28篇
  2005年   31篇
  2004年   25篇
  2003年   17篇
  2002年   14篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有482条查询结果,搜索用时 15 毫秒
61.
The aim of this research was to assess the antimicrobial activity of nine different industrial essences used in a soft drink factory in relation to their composition, as well as to verify the role of vapor pressure on their bioactivity. The essences were tested against a Saccharomyces cerevisiae strain isolated from spoiled soft drinks. The tests were carried out by adding the essences directly to a liquid medium or into the headspace of closed systems inoculated with the yeast. The headspace composition was evaluated through a solid phase microextraction-gas chromatography technique. The use of a mass spectrometer allowed the identification of the peaks detected. The microbial growth was indirectly monitored by measuring the metabolic CO2 released by the yeast. The results obtained indicated that the most effective essences were characterized by the highest concentration of some terpenes, such as citral, beta-pinene, and p-cymene. Moreover, all of the essences were more bioactive when added directly to the liquid medium.  相似文献   
62.

Purpose

This contribution investigates agricultural soils and sedimentary deposits in the province of Ferrara (Padanian alluvial plain, Northern Italy) in order to: examine their genesis; to define the geochemical background of the area; and to evaluate the existence of anthropogenic contamination. Moreover, environmental risk related to the presence of potentially toxic heavy metals that can be transferred into agricultural products (and consequently bio-accumulated in the food chain) was also assessed.

Materials and methods

The analyses (reported in an extensive supplementary dataset) include XRD, XRF and ICP-MS assessment of bulk sediments, tests of metal extraction with aqua regia, as well as analyses of local agricultural products, i.e. biomonitoring which is important in the evaluation of element mobility.

Results and discussion

Based on the results, GIS-based geochemical maps were produced and local background levels were defined. This approach demonstrated that high concentrations of Cr and Ni is a natural (geogenic) feature of the local alluvial terrains, which in turn is related to the origin and provenance of the sediments, as confirmed by the lack of top enrichment in all of the investigated sites. Tests of metal extraction and analyses of agricultural products provide guidelines for agricultural activities, suggesting that extensive use of sewage sludge, industrial slurry and manure (that are often rich in metals) should be minimised.

Conclusions

The dataset reported in this paper shows that the agricultural terrains of the studied alluvial plain are not characterised by anthropogenic heavy metal pollution. In spite of the elevated natural background of Cr and Ni, most of the local agricultural products do not show significant evidence of bio-magnification. Exceptions are represented by forage grass (alfalfa) and corn (maize) that tend to uptake As and Ni, respectively. This demonstrates that in agricultural areas, a geochemical risk assessment must include both soil and plant investigations.  相似文献   
63.
In soil, iron (Fe) solubility depends on complex interactions between Fe minerals and organic matter, but very little is known about plant availability of Fe present in Fe oxides associated with humic substances. For this purpose, this study investigates the effect of Fe mineral crystallinity in the presence of humic acids (HA) on Fe availability to plants. Four Fe–HA mineral coprecipitates were prepared, either in the presence or absence of oxygen, i.e., two goethite (G)‐HA samples containing large amounts of Fe as nanocrystalline goethite and ferrihydrite mixed phases, and two magnetite (M)‐HA samples containing crystalline magnetite. Bioavailability studies were conducted in hydroponic systems on cucumber plants (Cucumis sativus L.) grown under Fe deficient conditions and supplied with the Fe–HA coprecipitates containing goethite or magnetite. Results showed that plants grown in the presence of Fe–HA coprecipitates exhibited a complete recovery from Fe deficiency, albeit less efficiently than plants resupplied with Fe‐chelate fertilizer used as control (Fe‐diethylene triamine penta acetic acid, Fe‐DTPA). However, the supply with either G‐ or M–HA coprecipitates produced different effects on plants: G–HA‐treated plants showed a higher Fe content in leaves, while M–HA‐treated plants displayed a higher leaf biomass and SPAD (Soil–Plant Analysis Development) index recovery, as compared to Fe‐DTPA. The distribution of macronutrients in the leaves, as imaged by micro X‐ray fluorescence (µXRF) spectroscopy, was different in G–HA and M–HA‐treated plants. In particular, plants supplied with the poorly crystalline G–HA coprecipitate with a lower Fe/HA ratio showed features more similar to those of fully recovered plants (supplied with Fe‐DTPA). These results highlight the importance of mineral crystallinity of Fe–HA coprecipitates on Fe bioavailability and Fe uptake in hydroponic experiments. In addition, the present data demonstrate that cucumber plants can efficiently mobilize Fe, even from goethite and ferrihydrite mixed phases and magnetite, which are usually considered unavailable for plant nutrition.  相似文献   
64.
65.
A simple and fast reversed-phase HPLC method using diode array detection was developed and validated for the simultaneous determination of trans-resveratrol and quercetin in Sicilian red wine from the Nero d'Avola red grape variety. Investigation was also extended to the quantitative determination of resveratrol and quercetin in grape skins and winemaking byproducts obtained from the same cultivar. Samples were eluted using a C18 narrow-bore column under isocratic conditions in less than 20 min. Quantification of trans-resveratrol and quercetin in red wine was performed without any sample pretreatment, whereas the determination of these phenolic compounds in grape skins and wine pomage required a solvent extraction procedure. Linearity was demonstrated over the 0.39-12.5 and 0.45-57.6 microg/mL range for trans-resveratrol and quercetin, respectively. Detection limits in real samples were in the low ppm level (0.07 mg/L for trans-resveratrol and 0.12 mg/L for quercetin). The HPLC-UV/DAD method was applied for the routine analyses of red wine and grape skin and winemaking byproduct extracts to evaluate their trans-resveratrol and quercetin content. In particular, a very high content of quercetin was found in wine pomace, suggesting the use of this wine byproduct as a potential source of this health-promoting phenolic compound.  相似文献   
66.
The effect on stomatal resistance of ethylene released from ethephon sprays has been studied in 8 species of plants. Ethephon always increased stomatal resistance, but in some species only slightly. In olive and peach, increased stomatal resistance in treated plants was associated with more abscisic acid in the leaf tissues.  相似文献   
67.
BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment adsorption and degradation are considered to have a secondary effect on the dissipation of both herbicides in paddy fields. Copyright © 2011 Society of Chemical Industry  相似文献   
68.
Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development.  相似文献   
69.
Increasing the iron (Fe) and zinc (Zn) concentrations of staple foods, such as rice, could solve Fe and Zn deficiencies, which are two of the most serious nutritional problems affecting humans. Mugineic acid family phytosiderophores (MAs) play a very important role in the uptake of Fe from the soil and Fe transport within the plant in graminaceous plants. To explore the possibility of MAs increasing the Fe concentration in grains, we cultivated three transgenic rice lines possessing barley genome fragments containing genes for MAs synthesis (i.e., HvNAS1, HvNAS1, and HvNAAT-A and HvNAAT-B or IDS3) in a paddy field with Andosol soils. Polished rice seeds with IDS3 inserts had up to 1.40 and 1.35 times higher Fe and Zn concentrations, respectively, compared to non-transgenic rice seeds. Enhanced MAs production due to the introduced barley genes is suggested to be effective for increasing Fe and Zn concentrations in rice grains.  相似文献   
70.
Our earlier research on the photochlorination of some organics suspended in solutions of aqueous Cl? codissolved with anionic NO x ? is extended to systems comprising either bromides or iodides, and NO 3 ? . It is found that the bromide-containing systems follow, under both artificial UV and sunlight, overall reaction patterns quite similar to those of chlorides although the rate term which stands for the bromination of organics is larger and directly proportional to light intensities. Solutions containing iodides also follow a similar overall pattern but the first rate term is now proportional to the square of light intensity. However, they react liberating detectable amounts of iodine which thereafter attack the hydrocarbon. This excess of elementary iodine is thus found to be either dissolved in or adsorbed by the organic; it furthermore also dissolves and becomes complexed in the aqueous phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号