首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17846篇
  免费   84篇
  国内免费   1篇
林业   3681篇
农学   1324篇
基础科学   142篇
  2996篇
综合类   811篇
农作物   2170篇
水产渔业   1907篇
畜牧兽医   1794篇
园艺   1134篇
植物保护   1972篇
  2024年   4篇
  2023年   17篇
  2022年   27篇
  2021年   40篇
  2020年   46篇
  2019年   60篇
  2018年   2777篇
  2017年   2720篇
  2016年   1217篇
  2015年   101篇
  2014年   79篇
  2013年   69篇
  2012年   902篇
  2011年   2252篇
  2010年   2166篇
  2009年   1309篇
  2008年   1407篇
  2007年   1684篇
  2006年   128篇
  2005年   183篇
  2004年   162篇
  2003年   205篇
  2002年   116篇
  2001年   15篇
  2000年   51篇
  1999年   6篇
  1998年   7篇
  1997年   10篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   18篇
  1992年   13篇
  1991年   5篇
  1990年   4篇
  1989年   11篇
  1988年   15篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1980年   4篇
  1978年   3篇
  1977年   8篇
  1975年   4篇
  1969年   5篇
  1968年   5篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
931.
Spatial heteroscedasticity may arise jointly with spatial autocorrelation in lattice data collected from agricultural trials and environmental studies. This leads to spatial clustering not only in the level but also in the variation of the data, the latter of which may be very important, for example, in constructing prediction intervals. This article introduces a spatial stochastic volatility (SSV) component into the widely used conditional autoregressive (CAR) model to capture the spatial clustering in heteroscedasticity. The SSV component is a mean zero, conditionally independent Gaussian process given a latent spatial process of the variances. The logarithm of the latent variance process is specified by an intrinsic Gaussian Markov random field. The SSV model relaxes the traditional homoscedasticity assumption for spatial heterogeneity and brings greater flexibility to the popular spatial statistical models. The Bayesian method is used for inference. The full conditional distribution of the heteroscedasticity components can be shown to be log-concave, which facilitates an adaptive rejection sampling algorithm. Application to the well-known wheat yield data illustrates that incorporating spatial stochastic volatility may reveal the spatial heteroscedasticity hidden from existing analyses.  相似文献   
932.
High concentrations of heavy metals are known to be toxic to many soil organisms. The effects of long-term exposure to lower levels of metals on the soil microbial community are, however, less well understood. The southern Pennines of the U.K. are characterised by expanses of ombrotrophic peat soils that have experienced deposition of high levels of heavy metals since the mid to late 1800s. Concentrations of metals in the peat remain high but the effect of the contamination on the in-situ microbial communities is unknown. Geochemical and molecular polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing techniques were used to derive new information on the metal chemistry and microbial populations in peat soils from six locations in the southern Pennines. All sites were highly acidic (pH 3.00–3.14) with high concentrations of potentially toxic heavy metals, particularly porewater Zn and particulate-associated Pb. The results also reveal a split in site characteristics between the most polluted sites with the highest levels of bioavailable metals (Bleaklow, FeatherBed Moss and White Hill) and those with much lower bioavailable metals (Cowms Moor, Holme Moss and Round Hill). There was no difference in the number of dominant bacterial species between the sites but there were significant differences in the species composition. At the three sites with the highest levels of bioavailable metals, bacterial species with a high similarity to acidophilic sulphur- and iron-oxidizing bacteria and those from high metal environments were detected. The transformations carried out by these metal mobilising and acid producing bacteria may make heavy metals more bioavailable and therefore more toxic to higher organisms. Bacteria with similarity to those typically found in forest and grassland soils were documented at the three sites with the lowest levels of bioavailable metals. The data highlight the need for further studies to elucidate the species diversity and functionality of bacteria in heavy metal contaminated peats in order to assess implications for moorland restoration.  相似文献   
933.
Seasonal variations in pore water and solid phase geochemistry were investigated in urbanized minerotrophic peat sediments located in southwestern Michigan, USA. Sediment pore waters were collected anaerobically, using pore water equilibrators with dialysis membranes (“peepers”) and analyzed for pH, alkalinity, dissolved ΣPO4 ?3, ΣNH4 +, ΣS?2, SO4 ?2, Fe+3, Fe+2, and Mn+2 at 1-2 cm intervals to a depth of 50 cm. Cores collected adjacent to the peepers during all four seasons were analyzed for reactive solid phase Fe according to extraction methods proposed by Kostka and Luther (1994). The association of Fe and trace metals (Mn, Pb, Zn, Cu, Cr, Co, Cd, U) with operationally defined solid phase fractions (carbonates, iron and manganese oxides, sulfides/organics and residual) was assessed for cores extracted during winter and spring using extraction methods proposed by Tessier et al. (1979, 1982). Pore water Fe and S data demonstrate a clear seasonal variation in redox stratification of these sediments. The redox stratification becomes more compressed in spring and summer, with relatively more reducing conditions closer to the sediment water interface (SWI), and less reducing conditions near the SWI in fall and winter. In the upper 10–15 cm of sediment, the pool of ascorbate extractable Fe, thought to be indicative of reactive Fe(III) oxides, diminishes during spring and summer, in agreement with seasonal changes in redox stratification indicated by the pore water data. Tessier extractions indicate that the total extractable quantity of all metals analyzed in this study decrease with depth, and that the majority of the non-residual Fe, Pb, Zn, Cu, Cr, Co, Cd, and U is typically associated with the sulfide/organic fraction of the sediments at all depths. Non-residual Mn, in contrast, is significantly associated with carbonates in the upper 15–25 cm of the sediment, and predominantly associated with the sulfide/organic fraction only in deeper sediments.  相似文献   
934.
An experiment was conducted in 2001 at Holetta and Kulumsa, Ethiopia, to study the extent and pattern of genetic diversity in Ethiopian field pea (Pisum sativum L.) landraces. One hundred forty-eight germplasm accessions were grown in an alpha lattice design with 2 replications. Data on 12 traits were collected and analyzed. Differences among the accessions were significant for most of the traits (except number of seeds/ pod) at each location even though differences pooled over location were mostly non-significant. The accessions were grouped into five clusters of different sizes. Accessions from the southern part of the country (Arsi) distributed overall clusters while those from the northern half (North and South Wello, North Gonder and North Shewa) fell into clusters C1 to C3. Cumulative effects of a number of characters dictated differentiation of the accessions into clusters. There was no definite relationship between geographic diversity and genetic diversity as overlapping was encountered in clustering pattern among accessions from different parts of the country. Accessions from different regions might have similar genetic background and those from the same origin might also have different genetic background. Therefore, geographic diversity should not necessarily be used as an index of genetic diversity and parental selection should be based on a systematic study of genetic diversity in a specific population. Genetic distances among most of the clusters were significant that crosses between parents selected out of them are expected to generate desirable genetic recombination. Selection should also consider the special advantages of each cluster and each accession within a cluster. Future germplasm collection, conservation and breeding efforts should focus not only on inter-regional diversity but also on intra-regional diversity.  相似文献   
935.
A field experiment was conducted in 2001 at Holetta and Kulumsa, Ethiopia, to study genetic diversity in Ethiopian faba bean (Vicia faba L.) landraces. One hundred sixty random germplasm accessions were grown in an alpha lattice design with two replications. Data on 12 traits were collected and analyzed. Significant differences were observed among the accessions for most of the traits (except number of pods/podding nodes) at each location even though differences pooled over location were mostly non-significant. Cluster analysis distinguished seven diversity classes of different sizes. Accessions from the northern half of the country (North and South Wello, North Gonder and North Shewa) were closely related while those from the southern part of the country (Arsi) were highly diverse. Cumulative effects of a number of characters dictated differentiation of the accessions into clusters. Some overlapping were encountered between accessions from the northern and those from the southern parts of the country. The study revealed that accessions from different regions might have similar genetic background and those from the same origin might also have different genetic background. Therefore, geographic diversity should not necessarily be used as an index of genetic diversity and parental selection should be based on a systematic study of genetic diversity in a specific population. Genetic distances between most of the clusters were significant that crosses between parents selected out of them are expected to generate desirable progenies. Future germplasm collection, conservation and utilization strategies should put more focus not only on inter-regional diversity in the country as a whole but also on intra-regional diversity in Arsi.  相似文献   
936.
Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM),Aceria tosichella Keifer, is one of the most destructive viral diseases of wheat found in many wheat producing areas of the world. Host resistance is the most effective method for controlling this disease and its vector. Symptomatological analysis and enzyme-linked immunosorbent assay (ELISA) were used to characterize WSMV-resistance in wheat-alien partial amphiploid lines and their derivatives. The results showed that most of partial amphiploids derived fromThinopyrum ponticum andTh. intermedium were free of systemic symptoms with very low ELISA readings that were similar to that of the non-inoculated Chinese Spring control. While the partial amphiploid lines 693 and PWM706 were identified as new genetic resources of resistance to WSMV. The present study demonstrated that both symptomatological and ELISA methods efficiently assessed WSMV-resistance in the wheat-alien hybrids and systemic symptom incidence and ELISA absorbance readings were highly correlated (r 2 = 0.8658–0.9323) over time following inoculation. The ELISA results also indicated that the virus did not buildup in the plant tissues of these virus-resistant partial amphiploids. Similar results were observed in chromosome translocation and substitution lines that have the geneWsm1 conferring WSMV resistance. However, the lines containing the geneWsm1 and all the partial amphiploid lines, except Agrotana, were susceptible to the WCM. One line derived from a cross of wheat and Agrotana, was effective in controlling the spread of WSMV and was highly resistant to the WCM. Another line and an accession ofTriticum dicoccoides (Koern.) Schweinf. were highly susceptible to WSMV and WCM. Early disease development was delayed in a new hard red winter cultivar McClintock. The partial WSMV-resistance of McClintock was demonstrated by initially low ELISA readings, and a lower percentage of infected plants than other WSMV-susceptible wheat. The use of the identified promising sources of resistance to WSMV and the WCM in wheat breeding is discussed.LRC Contribution No. 387-01061.  相似文献   
937.
In the analysis of mixtures of drugs/chemicals it is often of interest to test for the presence of interaction. If the hypothesis of no interaction (additivity) is not rejected, then the analyst may reasonably claim additivity if and only if the study is powered to a desired (e.g., biologically meaningful) level. The objective of this article is to address the sample size and power issues related to testing the hypothesis of additivity at specified mixture points. The study of disinfectant by-products (DBPs) found in drinking water, described in earlier literature, is used to illustrate the procedures for estimating power and sample sizes for detecting interactions at specified mixtures. The four trihalomethanes used in the study are bromodichloromethane (BDCM), chlorodibromomethane (CDBM), chloroform (CHCl3), and bromoform (CHBr3)  相似文献   
938.

Purpose

Soil macropores play a principal role in water infiltration but they are highly variable. The objectives of this study were (1) to investigate the temporal change in macropores of an Ultisol as affected by land use and slope position and (2) to analyze contribution of macropores to water infiltration.

Materials and methods

Water infiltration was measured at upper and lower slopes in citrus orchard and watermelon field once every 2 months for 1 year using tension infiltrometers at a successive pressure head from ?12, ?6, ?3, to 0 hPa.

Results and discussion

Hydraulic conductivity (K) was significantly affected by land use and slope position except at 0 hPa pressure head, showing a significant temporal variation. Effective macroporosity, derived from the increment of hydraulic conductivity between ?3 and 0 hPa, showed a significant temporal variation. Such temporal variation was land use (P?<?0.05) and slope position (P?<?0.001) dependent. Despite of low proportion in total soil volume (averaged 3.5 cm3 m?3), the macropores contributed 47 % of water flux on average. The macroporosity was more stable and higher in the citrus orchard (2.43 cm3 m?3, coefficient of variance (CV)?=?75 %) than in the watermelon field (1.72 cm3 m?3, CV?=?117 %) and contributed more to infiltration in the citrus orchard (60 %, CV?=?16 %) than in the watermelon field (33 %, CV?=?43 %) as well, because tillage was operated only in the watermelon field.

Conclusions

No-tillage increased water conducting macropores but did not increase hydraulic conductivity irrespective of slope position.
  相似文献   
939.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   
940.

Purpose

This study investigated the phosphorus (P) source, mobilisation and transport potential of ditch bed sediments as well as surrounding field and bank soils in two agricultural headwater catchments with contrasting soil drainage capacities. This information is important for discerning the potential for ditches to attenuate or augment transfers of P from upstream sources and thus for developing appropriate management strategies for these features.

Materials and methods

Phosphorus sources were characterised using the Mehlich3-P, water-soluble P and total P tests. Phosphorus mobilisation potential was characterised using the Mehlich3-AL/P, Mehlich3-Ca/P and DESPRAL P tests. Phosphorus transport potential was characterised using data collected on the presence/absence of surface water in ditches during field surveys and downstream turbidity data.

Results and discussion

Ditch sediments had similar P source contents (Mehlich3-P, water-soluble P and total P) to the surrounding field soils and higher P contents than bank soils. However, calcium contents of sediments in the poorly drained catchment reflected the deep sub-soils rather than the surrounding field and bank soils. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments respectively indicated potential for P retention (above thresholds of 11.7 and 74, respectively). However, sediments were less aggregated than field soils and may mobilise more particulate P (PP) during rain events. Nevertheless, the majority of surveyed ditches dried out from March to September 2011; thus, their potential to mobilise PP may be less important than their capacity to attenuate soluble and PP during this time.

Conclusions

In these and similar catchments, soluble P attenuation and particulate P mobilisation should be maximised and minimised, respectively, for example, by cleaning out the sediments before they become saturated with P and encouraging vegetation growth on ditch beds. This study also highlighted the influence of deep sub-soils on soluble P retention in ditches and thus the utility of characterising soils below depths normally included in soil classifications.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号