首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13139篇
  免费   883篇
  国内免费   47篇
林业   1140篇
农学   546篇
基础科学   128篇
  3453篇
综合类   457篇
农作物   716篇
水产渔业   1383篇
畜牧兽医   4902篇
园艺   253篇
植物保护   1091篇
  2024年   21篇
  2023年   94篇
  2022年   174篇
  2021年   316篇
  2020年   301篇
  2019年   298篇
  2018年   554篇
  2017年   571篇
  2016年   571篇
  2015年   440篇
  2014年   545篇
  2013年   823篇
  2012年   963篇
  2011年   946篇
  2010年   576篇
  2009年   510篇
  2008年   787篇
  2007年   768篇
  2006年   633篇
  2005年   564篇
  2004年   535篇
  2003年   489篇
  2002年   377篇
  2001年   304篇
  2000年   307篇
  1999年   261篇
  1998年   67篇
  1997年   68篇
  1996年   55篇
  1995年   54篇
  1994年   34篇
  1993年   32篇
  1992年   76篇
  1991年   58篇
  1990年   57篇
  1989年   64篇
  1988年   51篇
  1987年   54篇
  1986年   52篇
  1985年   63篇
  1984年   42篇
  1983年   44篇
  1982年   27篇
  1979年   48篇
  1978年   42篇
  1977年   31篇
  1974年   32篇
  1973年   55篇
  1972年   37篇
  1971年   31篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
111.
垃圾填埋沼气的收集、净化与利用综述   总被引:9,自引:0,他引:9  
垃圾填埋沼气的回收利用是一项经济可行且对环境有益的技术.本文从填埋沼气的组成及其影响因素出发,探讨了沼气的收集、输送和贮存途径,介绍了当前的净化工艺,最后总结介绍了几种填埋沼气利用技术的特点及其适用性,并提出建立配备填埋沼气回收装置的卫生填埋场应成为我国城市垃圾处理的发展方向.  相似文献   
112.
Intercropping, drip irrigation, and the use of plastic mulch are important management practices, which can, when utilized simultaneously, increase crop production and save irrigation water. Investigating soil water dynamics in the root zone of the intercropping field under such conditions is essential in order to understand the combined effects of these practices and to promote their wider use. However, not much work has been done to investigate soil water dynamics in the root zone of drip-irrigated, strip intercropping fields under plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate soil water contents (SWC) at different locations, for different irrigation treatments, and with respect to dripper lines and plants (corn and tomatoes). Experimental data were then used to calibrate the HYDRUS (2D/3D) model. Comparison between experimental data and model simulations showed that HYDRUS (2D/3D) described different irrigation events and SWC in the root zone well, with average relative errors of 10.8, 9.5, and 11.6 % for irrigation treatments T1, T2, and T3, respectively, and with corresponding root mean square errors of 0.043, 0.035, and 0.040 cm3 cm?3, respectively. The results showed that the SWC in the shallow root zone (0–40 cm) was lower under non-mulched locations than under mulched locations, irrespective of the irrigation treatment, while no significant differences in the SWC were observed in the deeper root zone (40–100 cm). The SWC in the shallow root zone was significantly higher for the high irrigation treatment (T1) than for the low irrigation treatment, while, again, no differences were observed in the deeper root zone. Simulations of two-dimensional SWC distributions revealed that the low irrigation treatment (T3) produced serious severe water stress (with SWCs near the wilting point) in the 30–40 cm part of the root zone, and that using separate drip emitter lines for each crop is well suited for producing the optimal soil water distribution pattern in the root zone of the intercropping field. The results of this study can be very useful in designing an optimal irrigation plan for intercropped fields.  相似文献   
113.
Objective management of grazing livestock production systems needs monitoring of forage production at the managerial unit level. Our objectives were to develop a system that routinely estimates forage above-ground net primary production (ANPP) at the spatial and temporal resolution required by farmers in the Pampas of Argentina, and to facilitate adoption of the system by end users as a managerial support tool. Our approach was based on the radiation use efficiency (RUE) logic, which proposes that ANPP is determined by the amount of photosynthetically active radiation absorbed by the canopy (APAR), and the efficiency with which that energy is transformed in above-ground dry matter (radiation use efficiency, RUE). APAR is the product of incoming photosynthetically active radiation (PAR) and the fraction absorbed by the canopy (fPAR). We estimated fPAR as a non-linear function of MODIS normalized difference vegetation index (NDVI). RUE was empirically estimated for the two principal forage resources of the region, yielding the following relations: ANPP = 0.6 × APAR + 12, (R2 = 0.86; p < 0.001; n = 18) for the upland sown pastures, and ANPP = 0.27 × APAR + 26, (R2 = 0.74; p < 0.001; n = 18) for the lowland naturalized pastures, with ANPP in g/m2/60 days and APAR in MJ/m2/60 days. The models were able to predict independent ANPP values with acceptable accuracy. Computational procedures were automated and run in a Relational Data Base Manager System that stored and managed all the information. The system is currently monitoring 212,794 ha in 83 farms and provides monthly ANPP values for the previous month and a history of the last 6 years. The data so generated show ANPP differences between the two major forage resources, considerable variability of a given month’s ANPP among years and paddocks, and contrasting among-farm differences in the efficiency of conversion of ANPP and forage supplements into beef production. The system was well accepted by end users who utilize it mainly for making near real time decisions according to last month ANPP, and explaining results of previous production cycles by incorporating ANPP as an explicative variable. However, there were differences among farmers in the degree of utilization, apparently related to the advisor’s attitude toward this new technology. Our results indicate that (1) forage production of large extensions can be monthly monitored at the paddock level by a small laboratory with capabilities in geographic information systems, and (2) advisors and farmers apply this information to their managerial decisions.  相似文献   
114.
The standardized ASCE Penman–Monteith and FAO-56 equations were used to estimate reference evapotranspiration (ET0) using estimated and measured net radiation (Rn) and soil heat flux (G), based on hourly and daily meteorological data. The estimates were evaluated against lysimeter measurements. The results indicate that using measured or estimated values of Rn and G can have significant effect on the accuracy of the ET0 estimations, especially when calculations were made on an hourly basis. The FAO-56 version performed very well during the irrigation season on a daily basis. The use of measured Rn and G did not improve ET0 estimation on a daily basis, therefore, the use of estimated Rn and G appears to be dependable when calculations are based on 24-h weather data. When daily ET0 was calculated from hourly estimations, the results were different depending on the version used. The ASCE version was more accurate, especially when Rn and G were measured. Therefore, measurement of Rn and G may have potential to improve estimation only when daily ET0 is calculated from hourly estimations. The PM FAO-56 version was always a little less accurate than the ASCE version. For hourly calculations, using a constant surface resistance (as in FAO-56 version), the PM method underpredicted for high evaporative demand and vice versa. The ASCE version performed better than PM FAO-56 version when Rn and G were measured and estimated. Therefore, ASCE version tended to provide quite accurate values of hourly ET0, even using estimated values of Rn and G. As conclusion, the methods proposed by FAO-56 for estimating Rn and G tended to produce accurate estimates for daily and hourly ET0 under semiarid conditions and can be used with some degree of confidence for estimating ET0. In addition, results suggest that the ASCE standardized equation on an hourly basis improved the accuracy of ET0 estimation with respect to the FAO-56 version.  相似文献   
115.
Uniformity of distribution in irrigation systems plays an important role in the optimum use of irrigation water, with direct repercussions on water-use efficiency and production. To evaluate the effects of the wind on sprinkler water uniformity, it is necessary to measure infield water distribution under different wind conditions and then calculate the parameters that define water distribution. This paper perfects the SIRIAS simulation model for sprinkler systems, which can be used to design new irrigation installations or to improve existing ones. Using ballistic theory to simulate the trajectory of drops discharged by the sprinkler, the model obtains wind-distorted water distribution, with a new formulation for the air drag coefficient. It takes into account three options to distribute the evaporation and drift losses in the irrigation process. SIRIAS software has been programmed using Delphi language for Windows 95, 98 and NT.  相似文献   
116.
Dothistroma needle blight (DNB) is a serious needle disease of conifers that primarily affects pine species (Pinus spp.). Dothistroma septosporum is one of the DNB pathogens that has a diverse range of host species excluding Pinus armandii. In 15 inoculated P. armandii seedlings, D. septosporum acervuli were observed in 43 infected needles of ten seedlings with a mean disease severity of 1.11% at 25 weeks after inoculations, demonstrating the potential of D. septosporum to cause symptoms on the needles of P. armandii via artificial inoculation. The disease severity of P. armandii was similar to the positive control, Pinus nigra (median 0.75 for P. armandii to 0.70 for P. nigra), thus, P. armandii acts under artificial conditions as a susceptible host species.  相似文献   
117.
Landscape Ecology - Invasive plants cause significant impacts in forested areas throughout the world. However, little is known about the relative importance of environmental drivers on the...  相似文献   
118.
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h?1, which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l?1 h?1], specific rate [0.95 mg Cr(VI) g?1 biomass h?1] and capacity [44.38 mg Cr(VI) g?1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents.  相似文献   
119.
This study assesses the effect of salinity in bioavailability and toxicity of Zn by means of laboratory bioassays by observing contamination in both sediment and water, accumulation of Zn in biological tissues, and histopathological damage in the gills and guts tissues of Ruditapes philippinarum clams, which were exposed to different types of sediments from the Gulf of Cádiz (SW Spain) as well as two dilutions of toxic mud coming from an accidental mining spill. With this objective, the coefficients of distribution (K D) for Zn between overlying water and sediments were calculated, the histopathological frequencies in the tissues of the gills and guts of clams were determined, and the biota-sediment bioaccumulation factors as well as the bioaccumulation factors were quantified in the different stations. Results showed that the greatest histopathological damages appeared when the salinity values decreased. Statistical results showed that salinity was inversely correlated with histopathological damage (p?<?0.01) for the lesion index for gills. The most outstanding results were observed in the two dilutions of toxic mud (0.3% and 7.9%) at a salinity value of 10. Salinity was inversely correlated with the concentration of Zn in biological tissues (p?<?0.05) and inversely correlated with the concentration of Zn in water and sediment. Zn mobilization to the overlying water is produced when salinity values decrease.  相似文献   
120.
The threat imposed by increased sediment loading rates ranks among the most important stressors affecting coral reef ecosystems worldwide. This study represents an effort to quantify the effects of unpaved roads on erosion rates in a dry sub-tropical area of Puerto Rico and is intended to aid in developing scientifically-based erosion mitigation strategies. Hence, the specific objectives of this study were to: (1) measure sediment production rates from unpaved roads; (2) evaluate the effect of precipitation, rainfall erosivity, slope, plot length, and vegetation cover on sediment production rates; and (3) compare measured sediment production rates to published surface erosion data from roaded and natural sites in the Eastern Caribbean. Sediment production from nine abandoned road segments with varying slopes and plot lengths were measured with sediment traps in southwestern Puerto Rico from August 2003 to September 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号