首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   5篇
  国内免费   11篇
农学   2篇
  2篇
综合类   26篇
水产渔业   37篇
畜牧兽医   3篇
  2024年   3篇
  2023年   4篇
  2022年   7篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   11篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   9篇
  2011年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
31.
草鱼养殖池塘生物膜固着微生物群落碳代谢Biolog分析   总被引:7,自引:2,他引:7  
李志斐  王广军  谢骏  郁二蒙  余德光  夏耘  魏南 《水产学报》2014,38(12):1985-1995
为了探索池塘生态系统中生物膜形成过程固着微生物对碳源的需求特征,以生态基为生物膜载体材料,以草鱼养殖池塘为生物膜培养环境,利用Biolog技术,分析了生物膜形成过程中(第0、15、30、45和60天)微生物群落碳代谢特征。结果表明,不同采样时间生物膜固着微生物样品平均颜色变化率(average well color development,AWCD)均在培养168 h后达到稳定,并且5个采样时间点的AWCD值即对单一碳源的利用能力存在显著差异,生物膜固着微生物的碳代谢能力在15、30、45 d时最强,显著高于0和60 d(P0.05);多样性指数也呈现出与AWCD值相同的规律,15、30和45 d生态基的4类多样性指数(Shannon指数、Pielou指数、Mc Intosh指数和丰富度指数)均显著高于0和60 d(P0.05);同一采样时间生物膜固着微生物对多聚物类和碳水化合物类的利用率明显高于胺类、氨基酸类、酚类和羧酸类;随着生物膜的形成,固着微生物提高了对α-D-葡萄糖-1-磷酸、L-丝氨酸、N-乙酰-D-葡萄糖氨、吐温40、D-甘露醇等碳源的利用率;生物膜微生物代谢特征PCA分析表明,主成分1(PC1)贡献度为33.9%,主成分2(PC2)贡献度为21.1%,15、30和45 d的固着微生物群落差异较小,碳源代谢差异不显著,而与0和60 d的碳代谢差异显著。池塘生态系统中生物膜固着微生物在15~45 d代谢能力最强,且对碳源的利用是有选择性的。  相似文献   
32.
为摸清生态基养殖池塘系统的能量流动规律,以放置生态基的大口黑鲈 (Micropterus salmoides) 池塘为研究对象,采用原位实验方法,研究了生态基对大口黑鲈池塘养殖系统的水质及能量收支的影响。实验期间,生态基可显著降低池塘水体中氨氮、硝态氮、总氮及总磷含量(P<0.05),但对亚硝态氮、磷酸盐、底泥总氮和总磷含量无显著影响(P>0.05);饵料投入是系统能量输入的主要来源,分别占对照组和实验组总输入能的53.26%和55.02%,其次为浮游生物生产,两组分别为45.92%和44.22%;浮游生物呼吸是能量输出的主要途径,分别占对照组和实验组总输出能的60.01%和56.68%,其次为养殖生物收获,两组分别为28.78%和31.99%;生态基实验组生物净产出能、光合能转化效率、饲料能转化效率及总能量转化效率均显著高于对照组(P<0.05),而单位净产量耗饲料能和单位净产量耗总能则显著低于对照组(P<0.05)。结果表明,在大口黑鲈池塘放置生态基能改善池塘环境,有效提高系统产出量及能量利用效率。  相似文献   
33.
澳洲鳕鲈的生物学特征及人工繁养技术   总被引:1,自引:0,他引:1  
概述了澳洲鳕鲈的生物学特性以及人工繁育研究进展情况,为今后开展澳洲鳕鲈规模化人工养殖研究提供参考.  相似文献   
34.
不同碳氮比对杂交鳢稚鱼生长及养殖水质的影响   总被引:1,自引:0,他引:1  
【目的】研究在养殖水体中不同碳氮比对杂交鳢稚鱼生长及养殖水质的影响.【方法】在水体零交换条件下,以杂交鳢稚鱼为研究对象,通过添加葡萄糖,研究不同C/N对杂交鳢池生物絮团的形成与营养成分、养殖水质以及杂交鳢的生长性能与肌肉营养成分的影响,从而筛选出生物絮团形成所需的适合C/N.在室内塑料桶中分4组,对照组投基础饲料(C/N=7.6∶1);试验组分3组,在基础饲料中分别添加葡萄糖,控制C/N分别为10∶1、15∶1和20∶1.【结果】15d后15∶1组和20∶1组的生物絮团已经形成,碳氮比越高,其所形成的生物絮团的粗蛋白含量越低;当C/N≥10时,可形成较多的生物絮团,并有效的调节水质,降低水体中的氨氮、亚硝酸盐;当C/N超过15时,对杂交鳢稚鱼生长产生不利影响.【结论】在杂交鳢稚鱼养殖水体中维持碳氮比为10∶1~15∶1,可达到水质调控目的,维持生物絮团系统处于良好运行状态.研究结果为生物絮团技术在肉食性鱼类中的应用提供了理论依据.  相似文献   
35.
[目的]研究生物絮团技术对彭泽鲫生长及养殖水质的影响,为生物絮团技术在鲫鱼养殖中的应用提供理论依据.[方法]分别设生物絮团组和对照组,生物絮团组通过添加葡萄糖控制碳氮比(C/N)为20:1,对照组仅投喂配合饲料.试验周期60 d,期间每隔6d测定一次水质指标(氨氮、亚硝酸盐氮、硝酸盐氮),试验结束后测定彭泽鲫的生长指标.[结果]生物絮团组彭泽鲫的终末均重、个体增重率、特定生长率、饵料蛋白利用率均显著高于对照组(P<0.05,下同),饵料系数则显著低于对照组.在养殖水质方面,从整个养殖周期来看,生物絮团组的氨氮浓度相对较稳定,维持在1.00 mg/L左右;亚硝酸盐氮浓度变化呈逐渐下降的趋势;硝酸盐氮浓度也比较稳定,基本维持在10.00 mg/L以下.[结论]生物絮团技术应用于彭泽鲫养殖中可有效改善水质,并可促进彭泽鲫生长和提高饵料利用效率,实现饵料蛋白的二次利用.  相似文献   
36.
为研究C/N调控和生态基对草鱼生长性能、水质及微生物活动的影响,利用PCR-DGGE技术对不同C/N条件下草鱼养殖池水体及生态基细菌群落结构的动态变化进行研究,并监测养殖水质指标和草鱼生长状况。在生态基系统中,对照组投喂基础饲料,试验组在基础饲料上添加葡萄糖,控制C/N分别为15∶1(CN15)、20∶1(CN20)和25∶1(CN25)。结果显示:CN20处理组中,草鱼增重率及特定生长率均显著高于其他组(P0.05),饵料系数显著低于其他组(P0.05)。CN25处理组中,溶氧、硝酸态氮、亚硝酸态氮水平均显著低于其他组(P0.05);CN20和CN25处理组中,COD及BOD含量显著高于其他组(P0.05)。同时,生态基中的细菌总量随着C/N的提高逐渐增加,最高值为5.57×107 cells/g。PCR-DGGE结果显示:随着C/N提高,对照组、CN15、CN20和CN25处理组的水体细菌群落组成与水源水体的相似性分别为37%、32%、26%和22%,该4个处理组的生态基细菌群落组成与养殖水体的相似性分别为59%、58%、55%和52%。红细菌(Rhodobacter blasticus)、绿弯菌(Chloroflexi)是各处理组生态基中的共有细菌,并且它们为对照组和CN15组养殖水体的特有菌;拟杆菌(Bacteroidetes)是CN20组养殖水体及生态基中特有优势细菌。结果表明,在生态基系统中,不同C/N影响水体细菌群落向生态基的定居迁移;C/N为20∶1与生态基结合使用可显著促进草鱼生长、提高养殖产量。  相似文献   
37.
建立了基于灰色系统理论的投入产出优化模型,并将其运用于水产养殖的投入产出分析。在获得投入、产出系数后,利用GM(1,1)模型预测最终水产养殖的需求量(上下限)、资源保证程度(最高量和最低量);然后通过定性分析与定量研究,对未来各阶段投入产出系数进行修正和设计灰色投入产出优化模型;最后进行模型计算,取得多种可供选择的优化方案并进行综合论证评价后确定最满意方案。该模型做到了方法互补,求解比较容易而且便于灰靶决策。  相似文献   
38.
研究了盐度突降对拟穴青蟹(Scylla paramamosain)大眼幼体生长发育和Na+/-K+-ATPase活性的影响。实验用水由海水和淡水配制成20%、40%、60%、80%和100%SW,其盐度分别为6.4、12.8、19.2、25.6和32.0。在不同环境盐度突降条件下,盐度6.4处理组拟穴青蟹大眼幼体在24 h内全部死亡;盐度12.8、19.2、25.6和32.0处理组拟穴青蟹大眼幼体的存活率无显著差异(P≥0.05),各处理组幼体蜕皮持续时间分别为2、2、3和4 d;当发育至C1期第2天时,盐度12.8处理组体重平均增量低于盐度19.2、25.6和32.0处理组,且差异显著(P<0.05)。盐度6.4处理组酶活性从实验开始即急速增加,至6 h时与其它各组呈显著差异(P<0.05);盐度32.0处理组酶活性从实验开始就下降,至72 h后变化趋于平缓;盐度12.8、19.2和25.6处理组酶活性在6 h内逐渐上升,之后迅速下降,于72 h时降至最低,之后酶活性变化趋于平缓。在96~120 h内,盐度12.8处理组酶活性始终显著高于25.6和32.0处理组(P<0.05)。结果表明,拟穴青蟹大眼幼体生长的最适盐度为19.2,适宜生长盐度下限在12.8~19.2之间,生存盐度下限在6.4~12.8之间。  相似文献   
39.
在草型湖泊中,水生高等植物受到湖体内高营养刺激而大量生长。虽然植物的大量生长在短时间内降低了湖体营养盐,提高了透明度,但当水生植物进入衰亡期,其残体在水力和生物的作用下腐解,释放大量的营养物质,进一步加剧湖水中的富营养化状态。腐解后的植物残体会变成泥炭沉积于湖底,易使湖底升高,水位降低,加速湖泊的沼泽化进程。过多的水生植物残体极容易对水生态的平衡造成威胁,因此,本研究详细介绍了水生植物残体在湖泊中的分解机制与影响,探究底栖动物和微生物在植物残体降解中的应用,并提出建议与展望,为植物残体降解修复研究奠定基础。  相似文献   
40.
2.放养前的准备鱼种放养前先将鱼塘排干、除杂、并曝晒30天,灌水0.5米后,可用生石灰或者漂白粉清塘消毒,以杀灭野杂鱼类、寄生虫类、螺类及其他敌害,使池塘底白、坡白、水白,有效杀灭病菌。鱼塘消毒后适时进行灌水,灌水时应扎好过滤水布,防止有害生物进入池内,水灌至1.8~2.0米  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号