首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13464篇
  免费   359篇
  国内免费   16篇
林业   961篇
农学   490篇
基础科学   65篇
  1960篇
综合类   952篇
农作物   1321篇
水产渔业   951篇
畜牧兽医   6047篇
园艺   286篇
植物保护   806篇
  2022年   101篇
  2021年   189篇
  2020年   115篇
  2019年   143篇
  2018年   293篇
  2017年   349篇
  2016年   339篇
  2015年   404篇
  2014年   438篇
  2013年   478篇
  2012年   843篇
  2011年   764篇
  2010年   368篇
  2009年   304篇
  2008年   421篇
  2007年   407篇
  2006年   348篇
  2005年   1038篇
  2004年   898篇
  2003年   673篇
  2002年   287篇
  2001年   289篇
  2000年   164篇
  1999年   234篇
  1998年   43篇
  1992年   156篇
  1991年   192篇
  1990年   220篇
  1989年   191篇
  1988年   198篇
  1987年   150篇
  1986年   177篇
  1985年   149篇
  1984年   115篇
  1983年   105篇
  1979年   155篇
  1978年   118篇
  1977年   112篇
  1976年   88篇
  1975年   150篇
  1974年   151篇
  1973年   141篇
  1972年   161篇
  1971年   135篇
  1970年   109篇
  1969年   124篇
  1968年   129篇
  1967年   134篇
  1966年   113篇
  1965年   75篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
The influence of three spatially hierarchical factors upon soil macrofauna biodiversity was studied in four pasture plots in eastern Amazonia. The first factor was the local depth of the soil. The second factor was the ground cover type on the soil samples (bare ground, grass tufts, dead trees lying on the ground). The third factor was the dimensions of the grass tufts sampled (size and shape). The effect of each factor upon the morphospecies richness and density of total soil macrofauna was analysed. Detailed results are given for earthworms, termites, ants, beetles and spiders. All factors significantly affected the morphospecies richness and/or density of the soil macrofauna. The type of ground cover had the strongest influence, affecting the total richness and density of the soil macrofauna and of almost all the groups represented. The soil depth affected only the density of the termites and the global morphospecies richness. Interactions between soil depth and ground cover type affected the total macrofauna morphospecies richness and the density of the earthworms. The dimensions of the grass tuft influenced the global morphospecies richness, the morphospecies richness of the ants and the density of the spiders.  相似文献   
992.
Three separate greenhouse experiments were conducted to determine the bi-directional N transfer in a peanut and rice intercropping system using the direct 15N foliar feeding technique at N application rates of 15, 75 and 150 kg ha–1. When peanut was used as the 15N donor plant, the atom % 15N in the rice shoot was consistently higher than in control rice, indicating that 15N transfer from peanut to the associated rice crop occurred. The percentage of N transfer (%NT) from peanut to the associated rice was 9.9%, 5.7% and 4.2% at the three N application rates, respectively. The N transferred from peanut to rice was 22.6, 15.5 and 8.2 mg N plant–1, accounting for 10.9%, 6.4% and 3.1% of the total N accumulated in rice plants at the three N application rates, respectively. When rice functioned as the 15N donor plant, the %NTs were 4.4%, 2.1% and 1.4% and represented about 5.2%, 3.4% and 2.4% of total N accumulated in peanut shoot at the three N application rates, respectively. The net directional N transfer was from peanut to rice and this was calculated by the difference in the bi-directional transfers and was mainly due to peanut root decomposition. Thus, the %NTs were 10.7%, 6.3%, 5.1% and 3.5% on 28 July (the day on which peanut shoots were cut), 8 August, 28 August and 8 September, respectively, and correspondingly, the N transferred from peanut to rice represented 6.0%, 5.8%, 5.1% and 3.2% of the total N accumulated in the rice plants.  相似文献   
993.
To investigate the effects of individual plant species on microbial community properties in soils of differing fertility, a microcosm experiment was carried out using plant species representative of the dominant flora in semi-fertile temperate grasslands of northern England. Soil microbial biomass and activity were found to be significantly greater in the more fertile, agriculturally improved soil than in the less productive unimproved meadow soil. Differences in microbial community structure were also evident between the two soils, with fungal abundance being greater in the unimproved soil type. Individual plant species effects significantly differed between the two soils. Holcus lanatus and Anthoxanthum odoratum stimulated microbial biomass in the improved soil type, but negatively affected this measure in the unimproved soil. In both soil types, herb species generally had negative effects on microbial biomass. Patterns for microbial activity were less consistent, but as with microbial biomass, A. odoratum and H. lanatus promoted respiration, whereas the herbs negatively affected this measure. All plant species grown in the improved soil increased the abundance of fatty acids synthesised by bacteria (bacterial phospholipid fatty acid analysis) relative to bare soil, but they negatively impacted on this group of fatty acids in unimproved soil. Similarly, the abundance of the fungal fatty acid 18:26 was increased by all plants in the more fertile improved soil only, albeit non-significantly. Our data indicate that effects of plant species on microbial properties differ markedly in soils of differing fertility, making general predictions about how individual plants impact on soil properties difficult to make.  相似文献   
994.
A greenhouse experiment was conducted with a specially designed apparatus consisting of an upper and lower chamber where the treatment with rice was carried out (treatment 1). The apparatus also had a single chamber where treatment 2, without rice plants, was carried out. The scope of this study was to elucidate the influence of rice plant growth on gaseous N losses as N2 and N2O produced by nitrification-denitrification in a flooded soil fertilized with (NH4)2SO4 (with 56.50 atom% 15N). Gas samples were withdrawn weekly and analyzed for (N2 + N2O)-15N losses by mass spectrometer and for N2O by gas chromatograph. The gaseous (N2 + N2O)-15N losses of the treatment with rice plants were significantly (P =0.01) higher than those of the treatment without rice plants, as were the amounts of N2O emitted. Rice plants facilitate the efflux of N2 and N2O from soil to atmosphere, as about half of the total gaseous 15N loss as N2 and N2O was found in the upper chamber. The proportion of N2O-15N to (N2 + N2O)-15N in the upper chamber was 10.56%, much higher than that of the lower chamber in treatment 1 and the headspace of treatment 2.  相似文献   
995.
Coupled nitrification-denitrification and potential denitrification were measured as 15N2O and 15N2 evolution rates in ammonium sulphate-treated rice soils with or without Terrazole [5-ethoxy-3 (trichloromethyl) 1,2,3 Thiadizole] under laboratory and field conditions. The greatest coupled nitrification-denitrification activity was found after drying and rewetting the soil, with maximum values of 322 ng N cm–2 h–1 in the laboratory and 90.8 ng N cm–2 h–1 in the field. These 15N2O + 15N2 evolution rates were about 10 times lower than potential denitrification in these soils. These results and the observed decrease in 15N2O + 15N2 evolution rate in soils treated with Terrazole (60% under laboratory conditions and 52% under field conditions) indicate that denitrification was limited by coupled nitrification-denitrification activity. Oxygen and previous addition of ammonium sulphate appear to control the rate of 15N2O + 15N2 evolution in ammonium sulphate-fertilised soils.  相似文献   
996.
Reconstituted skim milk was adjusted to pH values between 6.5 and 7.1 and heated (90 degrees C) for up to 30 min. The skim milk samples were then readjusted to pH 6.7. Acid gels prepared from heated milk had markedly higher G ' values, a reduced gelation time, and an increased gelation pH than those prepared from unheated milk. An increased pH at heating decreased the gelation time, increased the gelation pH, and increased the final G ' of acid set gels prepared from the heated milk samples. There were only small differences in the level of whey protein denaturation in the samples at different pH values, and these differences could not account for the differences in the G ' of the acid gels. The levels of denatured whey protein associated with the casein micelles decreased and the levels of soluble denatured whey proteins increased as the pH at heating was increased. The results indicated that the soluble denatured whey proteins had a greater effect on the final G ' of the acid gels than the denatured whey proteins associated with the casein micelles.  相似文献   
997.
A gene responsible for the chlorothalonil biotransformation was cloned from the chromosomal DNA of Ochrobactrum anthropi SH35B, capable of efficiently dissipating the chlorothalonil. The gene encoding glutathione S-transferase (GST) of O. anthropi SH35B was expressed in Escherichia coli, and the GST was subsequently purified by affinity chromatography. The fungicide chlorothalonil was rapidly transformed by the GST in the presence of glutathione. LC-MS analysis supported the formation of mono-, di-, and triglutathione conjugates of chlorothalonil by the GST. The monoglutathione conjugate was observed as an intermediate in the enzymatic reaction. The triglutathione conjugate has not been previously reported and seems to be the final metabolite in the biotransformation of chlorothalonil. The glutathione-dependent biotransformation of chlorothalonil catalyzed by the bacterial GST is reported.  相似文献   
998.
999.
The effect of heat treatment on the antioxidant activity of extracts from Citrus unshiu peels was evaluated. Citrus peels (CP) (5 g) were placed in Pyrex Petri dishes (8.0 cm diameter) and heat-treated at 50, 100, or 150 degrees C for 10, 20, 30, 40, 50, and 60 min in an electric muffle furnace. After heat treatment, 70% ethanol extract (EE) and water extract (WE) (0.1 g/10 mL) of CP were prepared, and total phenol contents (TPC), radical scavenging activity (RSA), and reducing power of the extracts were determined. The antioxidant activities of CP extracts increased as heating temperature increased. For example, heat treatment of CP at 150 degrees C for 60 min increased the TPC, RSA, and reducing power of EE from 71.8 to 171.0 microM, from 29.64 to 64.25%, and from 0.45 to 0.82, respectively, compared to non-heat-treated control. In the case of WE from CP heat-treated at the same conditions (150 degrees C for 60 min), the TPC, RSA, and reducing power also increased from 84.4 to 204.9 microM, from 15.81 to 58.26%, and from 0.27 to 0.96, respectively. Several low molecular weight phenolic compounds such as 2,3-diacetyl-1-phenylnaphthalene, ferulic acid, p-hydroxybenzaldoxime, 5-hydroxyvaleric acid, 2,3-diacetyl-1-phenylnaphthalene, and vanillic acid were newly formed in the CP heated at 150 degrees C for 30 min. These results indicated that the antioxidant activity of CP extracts was significantly affected by heating temperature and duration of treatment on CP and that the heating process can be used as a tool for increasing the antioxidant activity of CP.  相似文献   
1000.
Recent experimental evidence on the relationship between temperature and litter or soil organic matter decomposition suggests that the simple assumption that temperature affects the rate constant of the processes may not be valid. Thermal conditions seem to influence the kinetics of C mineralization by changing, in a qualitatively predictable way, the estimated percentages of initial material that behave as labile or recalcitrant. The consequences of this shift in mineralization dynamics due to temperature, referred to as the functional shift hypothesis, for the long-term C accumulation potential of a soil were investigated using a modified version of Jenny's model. It was concluded that if soils behave according to the functional shift hypothesis, then the utilization of Q10 or other temperature response functions by simulation models leads to significant overestimations of soil C losses due to temperature increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号