Avian orthoavulavirus 13 (AOAV-13), formerly known as Avian paramyxovirus 13 (APMV-13), is found scatteredly in wild birds around the world. Although four complete genome sequences of AOAV-13 had been identified since the first discovery in Japan in 2003, the information available on the genetic variation and biological characteristics of AOAV-13 is still limited. In the present study, we isolated six AOAV-13 strains from fecal samples of wild migratory waterfowls during annual (2014–2018) viral surveillance of wild bird populations from wetland and domestic poultry of live bird markets (LBMs) in China. The phylogenetic analyses based on the HN and F genes showed that they had very close relationship and the molecular clock estimations showed a low evolutionary rate of AOAV-13. However, Bean goose/Hubei/V97–1/2015 is 1953 nt in size (ORF, 1, 776 nt), which is a unique size and longer than other reported AOAV-13 strains. Additionally, four repeats of conserved sequences “AAAAAT” was presented in the 5′-end trailer region of Swan goose/Hubei/VI49–1/2016, which is unprecedented in the AOAV-13. These findings highlight the importance of continuous monitoring the specific species of APMVs.
The pharmacokinetics of cefquinome was studied in plasma after a single dose (10 mg/kg) of intramuscular (i.m.) or intraperitoneal (i.p.) administration to tilapia (Oreochromis niloticus) in freshwater at 30 °C. Ten fish per sampling point were examined after treatment. The data were fitted to two‐compartment open models following both routes of administration. The estimates of total body clearance (CL/F), volume of distribution (Vd/F), and absorption half‐life (T1/2ka) were 0.049 and 0.037 L/h/kg, 0.41 and 0.33 L/kg, and 0.028 and 0.035 h following i.m. and i.p. administration, respectively. After i.m. injection, the elimination half‐life (T1?2β) was calculated to be 5.81 h, the maximum plasma concentration (Cmax) to be 49.40 μg/mL, the time to peak plasma cefquinome concentration (Tmax) to be 0.14 h, and the area under the plasma concentration–time curve (AUC) to be 204.6 μg h/mL. Following i.p. administration, the corresponding estimates were 6.05 h, 44.39 μg/mL, 0.17 h and 267.8 μg h/mL. The minimum inhibitory concentrations of cefquinome, determined for 30 strains of Streptococcus agalactiae isolated from diseased tilapia, ranged from 0.015 to 0.12 μg/mL. Results from these studies support that 10 mg cefquinome/kg body weight daily could be expected to control tilapia bacterial pathogens inhibited in vitro by a minimal inhibitory concentration value of ≤2 μg/mL. 相似文献