首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   5篇
林业   14篇
农学   10篇
基础科学   3篇
  24篇
综合类   2篇
农作物   13篇
水产渔业   13篇
畜牧兽医   20篇
园艺   6篇
植物保护   15篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   18篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有120条查询结果,搜索用时 0 毫秒
11.
Pectic polysaccharides were obtained from chalkumra (Benincasa hispida) fruit by sequential extraction with ammonium oxalate (fraction BOX), dilute acid (fraction BHCl), and cold dilute alkali (fraction BOH). The highest yield of polysaccharides was obtained with oxalate and HCl. BOX was enriched in partly methyl-esterified galacturonic acid, whereas BHCl and BOH contained mostly galactose. All of the extracts showed similar elution patterns in size exclusion chromatography although the intrinsic viscosities (eta) were different (132 +/- 6, 100 +/- 5, and 285 + 10 mL/g for BOX, BHCl, and BOH, respectively). From fractionation by anion exchange chromatography, homogalacturonan (as seen from sugar analysis and Fourier transform infrared spectrum) accounted for more than half of BOX and 11% of BHCl. Methylation analyses and hydrolysis of BHCl with endo-beta-(1-->4)-d-galactanase showed the presence of beta-(1-->4)-d-galactan. The neutral galactan represented more than 76% of BHCl and approximately 40% of BOH. The other polysaccharides were complex galactans in BOH and an acidic arabinan (<1%) in BOX and BHCl.  相似文献   
12.
Vertisol soils of central India are heavy in texture, with high clay content and low organic matter. These soils are prone to degradation and the soil loss is due to poor management practices including excessive tillage. Based on a long-term study conducted for improving the quality of these soils, it was found that management practice such as low tillage (LT) + 4 t ha?1 compost + herbicide (Hb) recorded significantly higher organic carbon (OC) (6.22 g kg?1) and available N (188.5 kg ha?1) compared to conventional tillage (CT) + recommended fertilizer (RF) + off-season tillage (OT) + hand weeding (HW) (OC: 4.71 g kg?1, available nitrogen (N) (159.3 kg ha?1). Among the physical soil quality parameters, mean weight diameter (MWD) was significantly higher under LT + 4 t ha?1 straw + Hb (0.59 mm). The practice of LT + 4 t ha?1 straw + HW recorded significantly higher microbial biomass carbon (MBC) (388.8 μg g?1). The order of key indicators and their contribution towards soil quality was as follows: OC (29%) >, MBC (27%) > available zinc (Zn) (22%) > MWD (9%) > available boron (B) (8%), > dehydrogenase activity (DHA) (5%). The order of the best treatment which maintained soil quality index (SQI) values reasonably good (>1.5) was as follows: LT + 4t ha?1 compost + HW (1.65) > LT + 4 t ha?1 compost +Hb (1.60) > LT + 4t ha?1 straw + HW (1.50). Hence, these treatments could be recommended to the farmers for maintaining higher soil quality in Vertisols under soybean system. Correlation studies revealed stronger relationship between key indicators like OC (R2 = 0.627), MBC (R2 = 0.884), available Zn (R2 = 0.739) and DHA (R2 = 0.604) with Relative Soil Quality Index (RSQI). The results of the present study would be highly useful to the researchers, farmers and land managers.  相似文献   
13.
Soil warming can affect plant performance by increasing soil nutrient availability through accelerating microbial activity. Here, we test the effect of experimental soil warming on the growth of the three invasive plant species Trifolium pratense (legume), Phleum pratense (grass), and Plantago lanceolata (herb) in the temperate-boreal forest ecotone of Minnesota (USA). Plants were grown from seed mixtures in microcosms of soils with three different warming histories over four years: ambient, ambient +1.7 °C, and ambient +3.4 °C. Shoot biomass of P. pratense and P. lanceolata and plant community root biomass increased significantly in soils with +3.4 °C warming history, whereas T. pratense responded positively but not significantly. Soil microbial biomass and N concentration could not explain warming effects, although the latter correlated significantly with the shoot biomass of P. lanceolata. Our results indicate that soil with a warming history may benefit some invasive plants in the temperate-boreal ecotone with potential impacts on plant community composition. Future studies should investigate the impact of warming-induced differences in soil organisms and nutrients on plant invasion.  相似文献   
14.
Imbalanced fertilizer use with intensive cropping has threatened the sustainability of agroecosystems, especially on acid soils. An understanding of the long-term effects of fertilizers and amendments on soil health is essential for sustaining high crop yields. The effects of application of fertilizers, and amendments for 46 years on soil properties and maize yield in an acid Alfisol were investigated in this study. Ten fertilizer treatments comprising different amounts of NPK fertilizers, farmyard manure (FYM) and lime, and one control, were replicated three times in a randomized block design. At 0–15 cm soil depth, bulk density was least (1.20 t/m3), porosity (49.8%) and water holding capacity (61.7%) were greatest in 100% NPK + FYM, corresponding to the largest organic carbon content (13.93 g/kg). Microbial biomass C and dehydrogenase activity in 100% NPK + FYM were 42% and 13.7% greater than 100% NPK, respectively. Available nutrients were significantly more with 100% NPK + FYM and 100% NPK + lime than control and other fertilizer treatments. At 15–30 cm depth, the effect of various treatments was comparable to the surface layer. Grain yield declined by 55% and 53% in 100% NPK(-S) and 100% NP, respectively, compared with 100% NPK, whereas 100% N as urea alone eventually led to crop failure. Soil porosity recorded the greatest positive correlation (r = .933**), whereas bulk density recorded a negative significant correlation (r = −.942**) with grain yield. The results suggest that integrated use of FYM/lime with chemical fertilizers is a sustainable practice in terms of crop yield and soil health, whereas continuous application of urea alone is detrimental to the soil health.  相似文献   
15.
A diversity of N2-fixing (diazotrophic) bacteria was isolated from two traditional rice cultivars, Sataria and Kartiki, from the rice growing area of Mithila region of North Bihar, India, where low levels of nitrogen fertilizers are applied. Nitrogen-free semisolid media NFb, JMV and LGI with different carbon sources and pH-values were used for enrichment and isolation of root-associated diazotrophs. The colonization density of roots by diazotrophs, as estimated from positive pellicle formation at highest dilution in nitrogen-free enrichment media, was 106–108 diazotrophic bacteria per g fresh root weight. Roots of the cultivar Kartiki were found to be more densely colonized endophytically by diazotrophs as detected after chloramine T (1%) surface disinfection. To ascertain the phylogenetic affiliation of the isolates, phylogenetic oligonucleotide probes and the Fluorescent in situ Hybridization (FISH) technique were applied. Using group-specific rRNA directed oligonucleotide probes, the majority of the isolates could be identified as alpha-, beta-, or gamma-proteobacteria. Using 16S and 23S rRNA-directed genus- or species-specific probes, Herbaspirillum seropedicae, Azospirillum amazonense, Burkholderia cepacia/vietnamiensis, Rhizobia and Pseudomonas spp. were found to be the most prominent root associated culturable diazotrophs. Diazotrophic Gluconacetobacter spp. were also demonstrated as colonizers of rice roots. Burkholderia cenocepacia, Pseudomonas sp. and three diazotrophic PGPR reference strains were used for the inoculation of axenically grown rice seedlings to determine the plant growth promoting potential. Significant increases in the shoot length (up to 60%), shoot dry weight (up to 33%) and the grain yield (up to 26%) per plant were observed in non-axenic pot and field trials. Using semisolid enrichment media after surface sterilization of field grown inoculated rice roots and oligonucleotide probing of the diazotrophic enrichment cultures, a sustainable colonization with the inoculated bacteria could be demonstrated.  相似文献   
16.
Genetic Resources and Crop Evolution - Santa Rosa and Frontier are the major Japanese plum (Prunus salicina Lindl.) cultivars grown throughout the world. The present investigation was performed to...  相似文献   
17.
The System of Rice Intensification (SRI) reportedly enhances the yields of rice (Oryza sativa L.) through synergy among several agronomic management practices. This study was conducted to investigate the effects on rice plant characteristics and yield by comparing the plants grown with different methods of cultivation – SRI vs. recommended management practices (RMP) focusing on the impact of different plant spacings. Performance of individual hills was significantly improved with wider spacing compared with closer‐spaced hills in terms of root growth and xylem exudation rates, leaf number and leaf sizes, canopy angle, tiller and panicle number, panicle length and grain number per panicle, grain filling and 1000‐grain weight and straw weight, irrespective of whether SRI or RMP was employed. Both sets of practices gave their highest grain yield with the spacing of 20 × 20 cm; however, SRI yielded 40 % more than the recommended practice. At this spacing, canopies also had the highest leaf area index (LAI) and light interception during flowering stage. The lowest yield was recorded at 30 × 30 cm spacing under both the practices, as a result of less plant population (11 m?2), despite improved hill performance. During the ripening stage, hills with wider spacing had larger root dry weight, produced greater xylem exudates, and transported these towards shoot at faster rates. These features contributed to the maintenance of higher chlorophyll levels, enhanced fluorescence and photosynthesis rates of leaves and supported more favourable yield attributes and grain yield in individual hills than in closely‐spaced plants. Moreover, these parameters further improved in SRI, apart from the enhanced percentage of effective tillers and showed substantial and positive impacts on grain yield (17 %) compared with recommended practice. In conclusion, wide spacing beyond optimum plant density, however, does not give higher grain yield on an area basis and for achieving this, a combination of improved hills with optimum plant population must be worked out for SRI.  相似文献   
18.
The study describes the capacity of trees to control the rise in water table and thus prevent the formation of waterlogged soils and development of secondary salinization in canal irrigated areas. It was conducted in RCC lysimeters of 1.2 m dia. and 2.5 m depth filled with sandy loam alluvial soil (Typic Ustochrept), with provisions to maintain water table depth at 1, 1.5 and 2 m from the surface and groundwater salinity at 0.4, 3, 6, 9 and 12 dS m-1. The amount of water biodrained by eucalyptus (Eucalyptus tereticornis) and bamboo (Bambusa arundinacea) at the given water table depths and groundwater salinity levels was monitored over four years by daily measuring the water needed for maintaining the water table. The trees continued to absorb and transpire water throughout the year, the capacity being more in summer and rainy than that was in the winter season. The eucalyptus plant could biodrain 2880, 5499, 5518 and 5148 mm of water in the first, second, third and fourth year of study period, from non-saline groundwater and a water table depth of 1.5 m. The amount of water biodrained was more at 1.5 m as compared to 1 and 2 m water table depths. The biodrainage capacity of trees was significantly affected by the salinity of the groundwater. However, even at salinity of 12 dS m-1, the eucalyptus plant biodrained 53% of that under non-saline conditions. It was calculated that biodrainage could control water table rises upto 1.95, 3.48, 3.76 and 3.64 m in first, second, third and fourth year, respectively. The secondary salinity developed in the root zone, upto 45 cm depth, did not exceed 4 dS m-1 even at water table depth of 1 m with salinity of 12 dS m-1. The volume of water biodrained by bamboo increased with time and could control water table rises upto 1.09, 1.86, 2.46 and 2.96 m in first, second, third and fourth year of growth, respectively.This study indicates that due to high transpiration capacity and an ability to extract water from deeper layers containing saline groundwater, the trees can control the rise in water table in irrigation command areas and prevent the formation of waterlogged and eventually the saline wastelands.  相似文献   
19.
Screening for newer bioactive compounds from microbial metabolites resulted in the isolation of a novel antibiotic from the culture filtrate, Streptomyces sp 201, of a soil. The bioactive compound, with antifungal and antibacterial activity, was identified as 2-methylheptyl isonicotinate. The antifungal activity of live culture, culture broth and the isolated bioactive compound showed marked inhibition against dominant soil-borne phytopathogens such as Fusarium oxysporum Schlect, F moniliforme Sheldon, F semitectum Berkeley & Ravenel, F solani (Martius) Sacc and Rhizoctonia solani Kuehn. The compound had no effect on seed germination and seedling development as displayed by root and stem growth of the test plant species. In pot experiments with seedlings of cruciferous plants such as Raphanus sativus L (radish), Brassica campestris L (yellow mustard), Brassica oleracea var botrytis L (cauliflower), the antibiotic compound showed promising protective activity of 92% when seeds of the test plants were treated at a dose of 50 micrograms ml-1 prior to sowing. Seed treatment with a spore suspension (3 x 10(8) spores ml-1) of the Streptomyces sp 201 displayed protective activity in the range of 56-60%. Seeds coated with 2.5% methyl cellulose-amended spores of the antagonist showed protective activity in the range of 64-72%. Further, seed treatment with the culture filtrate of the antagonist also showed promising protective activity in the range of 64-84%.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号