首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   4篇
  国内免费   2篇
林业   17篇
农学   9篇
基础科学   1篇
  40篇
综合类   10篇
农作物   6篇
水产渔业   22篇
畜牧兽医   56篇
园艺   1篇
植物保护   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   21篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2006年   4篇
  2005年   14篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
71.
72.
Uncertainties in the rate of biomass variation with forest ageing in tropical secondary forests, particularly in belowground components, limit the accuracy of carbon pool estimates in tropical regions. We monitored changes in above- and belowground biomass, leaf area index (LAI), and biomass allocation to the leaf component to determine the variation in carbon accumulation rate with forest age after shifting cultivation in Sarawak, Malaysia. Nine plots in a 4-year-old forest and fourteen plots in a 10-year-old forest were monitored for 5 and 7 years, respectively. Forest and plant part biomass were calculated from an allometric equation obtained from the same forest stands. Both above- and belowground biomass increased rapidly during the initial decade after abandonment. In contrast, a much slower rate of biomass accumulation was observed after the initial decade. LAI also increased by approximately double from the 4-year-old to 10-year-old forest, and then gently increased to the 17-year-old forest. We also found that allocation variation in leaf biomass and nitrogen was closely related to the rate of biomass accumulation as a forest aged. During the first decade after abandonment, a high biomass and nitrogen allocation to the leaf component may have allowed for a high rate of biomass accumulation. However, reduction in those allocations to leaf component after the initial decade may have helped to suppress the biomass accumulation rate in older secondary forests. Roots accounted for 14.0–16.1% of total biomass in the 4–17-year-old abandoned secondary forests. We also verified the model predicted values for belowground biomass by Cairns et al. (1997) and Mokany et al. (2006), although both models overestimated the values throughout our data sets by 45–50% in the 10-year-old forest. The low root:shoot ratio in the secondary forests may have caused this overestimation. Therefore, our results suggest that we should modify the models to estimate belowground biomass considering the low root:shoot ratio in tropical secondary forests.  相似文献   
73.
In smooth muscle tissue, two smooth muscle myosin heavy chain (MHC) isoforms (SM1, SM2) and two non-muscle MHC isoforms (NMA, NMB) have been identified. The purpose of our study was to clarify whether smooth muscle MHC mRNA expression reflects the physiological and functional state of the muscle. We studied the expression pattern of MHC mRNAs, using the S1-nuclease mapping procedure, in functionally and morphologically changeable organs; the ductus arteriosus (DA) during development (25 and 29 days of gestation, and from 3-day-old neonates) and uteri from virgin, day-10 pregnant (P10) and day-29 pregnant (P29) rabbits. The results demonstrated that SM2 expression was greater in the fetal DA than in the fetal aortic and pulmonary arteries, but that it decreased significantly following closure of DA. In the gravid uterus, SM1 expression was significantly (P<0.05) strong compared to other MHC mRNAs from virgin to P10 rabbits. During pregnancy, NMB expression showed a tendency to increase until P10, and after P10, SM2 expression increased dramatically and NMB expression decreased to give almost a mirror image of the SM2 expression. Smooth muscle type (SM1, SM2) was significantly (P<0.05) strong compared to non-muscle type expression (NMA, NMB) at P29. These data suggest that smooth muscle MHC mRNA, especially SM2 expression reflects the physiological and functional state of the smooth muscle.  相似文献   
74.
75.
76.
77.
78.
Two kinds of FeIFN-alpha consisting of 166 amino acids (aa) and 171 aa were expressed in Escherichia coli, and the purified proteins were tested for antiviral activity on homologous and heterologous animal cells. Crude FeIFN induced in feline cells revealed antiviral activity on both homologous and heterologous animal cells. In contrast, both types of recombinant FeIFN-alpha revealed antiviral activity only on the feline cells. All of the FeIFN-alpha subtypes showed high activity to vesicular stomatitis virus, and the three species of feline viruses belonging to different families.  相似文献   
79.
No-tillage (NT) management is a promising method to sequester soil C and mitigate global warming caused by agricultural activities. Here, we report 4 years of continuous soil respiration rates and weekly nitrous oxide (N2O) and methane (CH4) emissions in NT and conventional-tillage (CT) plots in a typical Japanese volcanic soil. Overall, the soil respiration, N2O emission, and CH4 uptake decreased significantly in the NT plot. A difference in soil respiration and N2O emission between the two plots began after the tillage treatment and the incorporation of crop residues and fertilizers, whereas the CH4 uptake did not vary significantly during the fallow period after the treatments. The N2O emission was higher from the CT than from the NT plot during the fall. The overall lower CH4 uptake in the NT than in the CT plot likely resulted from a combination of decreased soil gas diffusivity and higher mineral N content at the soil surface. Higher soil respiration and N2O emission occurred in the NT plot in the summer of 2003 and were plausibly caused by an increase in the soil moisture content that resulted from lower temperatures during July and August; the higher soil moisture must have accelerated the decomposition of organic matter accumulated in the topsoil. These results indicate that NT management is generally effective for the mitigation of the total GWP by reducing soil respiration and N2O emission in temperate regions; however, NT management may increase rather than decrease these emissions when fields experience cool summers with frequent rainfall.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号