首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
林业   6篇
农学   9篇
  13篇
综合类   3篇
农作物   12篇
水产渔业   6篇
畜牧兽医   14篇
园艺   1篇
植物保护   7篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  1999年   1篇
  1997年   1篇
  1975年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
21.
Partitioning of the genotypes by environment interaction (GEI) is important in order to determine the nature of the GEI. The objectives of this study were to assess the presence and nature of GEI for nine agronomic traits of rapeseed cultivars, and to identify cultivars with favorable levels of stable oil production. Nine rapeseed cultivars, including seven open pollinated and two hybrids, Hyola308 and Hyola401, were grown in ten environments under rain-fed warm areas of Iran. The GEI was significant for all traits and was partitioned into components representing heterogeneity due to environmental index and the remainder of the GEI. Among the all traits with a highly significant heterogeneity, the largest amount of heterogeneity removed from the GEI was for seeds per pod and seed weight. We found GEIs for both oil content and seed yield were largely influenced by differences in correlations among pairs of cultivars (86.8 and 71.4% of the GEI sum of squares, respectively), suggesting that crossover GEIs (i.e., change in genotype rankings among environments) are present. The mean correlation of each cultivar with all other cultivars ([`(r)]ii \bar{r}_{{ii^{\prime}}} ) ranged from 0.53 to 0.83 for oil content and 0.86 to 0.96 for seed yield. A comparison was done of the significance of Sh-σi2 (stability variance derived from total GEI) and Sh-Si2 (adjusted stability variance derived from residual GEI) assignable to each genotype for oil content and seed and oil yield. Based on Sh-σi2, three cultivars were unstable for oil content, whereas six cultivars were unstable for seed and oil yield. The removal of heterogeneity revealed that one unstable cultivar for oil content and three unstable cultivars for oil yield were judged to be stable. All cultivars with [`(r)]ii \bar{r}_{{ii^{\prime } }}  ≤ 0.63 were labeled unstable for oil content, whereas all with [`(r)]ii \bar{r}_{{ii^{\prime } }}  ≤ 0.94 were considered unstable for seed yield. The relationships between [`(r)]ii \bar{r}_{{ii^{\prime } }} and Sh-σi2 were significant (P < 0.01) for oil content and seed yield. The results of rank correlation coefficients showed significant positive correlations of Yield-Stability statistic (YSi) with oil content and oil yield. Cultivars such as Option500 and Hyola401 were identified as having stable, high levels to seed yield and oil content.  相似文献   
22.
Pot experiment was conducted in a greenhouse to compare the effect of four organic substrates [S1: Persian turpentine trees leaf mold (50%) + Soil (50%); S2: Oak leaf mold (50%) + Soil (50%); S3: Cypress leaf mold (50%) + Soil (50%) and S4: liquorice processing wastes (50%) + Soil (50%)] application on strawberry growth, yield, and nutrient concentration, and on some soil properties. Results showed that leaves mold and liquorice wastes application decreased pH, increased soil organic matter, and increased soil concentrations in all mineral elements studied, except for potassium (K). The amount of mineral elements in substrates had also a great influence on the leaf nutrient concentrations. High levels of nitrogen (N), K, iron (Fe), manganese (Mn), and zinc (Zn) were obtained in leaves; while phosphorus (P) concentration was lower than sufficient levels. Although, strawberry fresh and dry weights and leaf chlorophyll content were significantly higher in plants grown in S4 with no added fertilizer, the highest fruit yield was obtained in combination substrates with 50% fertilizer. Our results indicate that use of leaf mold and liquorice wastes in soil mixtures can reduce the amount of fertilizer required for optimum strawberry plant growth and yield.  相似文献   
23.
This research was conducted to investigate the effect of natural zeolite on vegetative growth and flower characteristics of tuberose (Polianthes tuberosa L.). The experiment was performed as a completely randomized design with seven treatments (5, 10, 15, 20, 25 and 30 g zeolite/kg soil mixture along with control) and four replicates. Results indicate that zeolite increased the height of flowering stem, diameter of flower, leaf area and chlorophyll content, but decreased the diameter of flowering stem, dry weight of shoots, and roots and bulblets. Overall, zeolite added to the soil mixture had beneficial effects on only some of the parameters of tuberose growth and development.  相似文献   
24.
Evaluation of genotype × environment interaction (GEI) is an important component of the variety selection process in multi-environment trials. The objectives of this study were first to analyze GEI on seed yield of 18 spine safflower genotypes grown for three consecutive seasons (2008–2011) at three locations, representative of rainfed winter safflower growing areas of Iran, by the additive main effects and multiplicative interaction (AMMI) model, and second to compare AMMI-derived stability statistics with several stability different methods, and two stability analysis approaches the yield-stability (Ysi) and the GGE (genotype + genotype × environment) biplot that are widely used to identify high-yielding and stable genotypes. The results of the AMMI analysis showed that main effects due to genotype, environment, and GEI as well as first six interaction principle component axes (IPCA1 to 6) were significant (P < 0.01). According to most stability statistics of AMMI analyses, genotypes G5 and G14 were the most stable genotypes across environments. According to the adjusted stability variance (s2), the high-yielding genotype, G2, was unstable due to the heterogeneity caused by environmental index. Based on the definition of stable genotypes by regression method (b = 1, S d 2  = 0), genotypes G11, G9, G14, G3, G12 and G13 had average stability for seed yield. Stability parameters of Tai indicated that genotype G5 had specific adaptability to unfavorable environments. The GGE biplot and the Ysi statistic gave similar results in identifying genotype G2 (PI-209295) as the best one to release for rainfed conditions of Iran. The factor analysis was used for grouping all stability parameters. The first factor separated static and dynamic concepts of stability, in which the Ysi and GGED (i.e., the distance from the markers of individual genotypes to the ideal genotype) parameters had a dynamic concept of stability, and the other remaining parameters had static concept of stability.  相似文献   
25.
Fumigant activity of essential oil vapors distilled from Carum copticum C. B. Clarke and Vitex pseudo-negundo Hand I. MZT. was tested against eggs, larvae and adults of Callosobruchus maculatus (F.). Fumigant toxicity was assessed at 27 ± 1°C and 60 ± 5% RH, in dark condition. The influence of different concentrations of the essential oil vapors on egg hatchability, larval and adult mortality was significant. Data probit analysis showed that lethal concentration of the essential oil to kill 50% of the population (LC50) for egg, larvae and adult were found to be 1.01, 2.50 and 0.90 μl/l air of C. copticum oil, followed by 2.20, 8.42 and 9.39 μl/l air essential oil of V. pseudo-negundo, respectively. Between these essential oils, C. copticum was almost more toxic than V. pseudo-negundo on all growth stages of C. maculatus. The present study suggests that essential oils from these medicinal plants may be potential grain protectants as botanical alternative fumigants and could be used in the management of various life stages of C. maculatus.  相似文献   
26.
Accurate estimation of reference evapotranspiration (ETo) is essential for water resources management and irrigation systems scheduling, especially in arid and semiarid regions such as Iran. In the present research, constant coefficients of Hargreaves–Samani (CH–S) and Priestley–Taylor (CP–T) equations were locally calibrated to estimate the ETo based on the FAO–Penmen–Monteith (PM) method as standard method. For this purpose, meteorological data of eight synoptic stations located in the northwest of Iran were used during the period of 1997–2008. The outcomes showed that the values of CH–S and CP–T were 0.0026 (instead of 0.0023) and 1.68 (instead of 1.26), respectively. Also, at stations with high wind speed, the values of calibrated coefficients of CH–S and CP–T were maximum. Then, the estimated ETo values using adjusted CH–S and CP–T coefficients were compared to the obtained actual ETo values by PM method using root mean square error and mean bias error indices. The results indicated that the new calibrated H–S and P–T equations have good agreement with the PM method for estimation of the ETo. Moreover, the equation of Ravazzani et al. was calibrated in the studied region. It was concluded that in general, the mentioned equation was shown better performance than original H–S equation.  相似文献   
27.
28.
To study the effects of different levels of drought stress on root yield and some morpho-physiological traits of sugar beet genotypes, a study was conducted in the research farm of Islamic Azad University of Birjand, Iran in 2013 as strip-split plot experiments based on randomized complete block design. Different levels of drought stress were considered as vertical factor in three levels including normal irrigation, moderate stress, and severe stress. Horizontal factor was assigned to five varieties of sugar beet. Drought stress had a significant effect on root dry weight, total dry weight, root yield, and leaf temperature at 1% probability level and on leaf dry weight, crown dry weight, and harvest index at 5% probability level. Drought stress had an adverse effect on root yield of investigated genotypes of sugar beet. Under normal conditions, the mean of root yield was higher than middle and severe drought stress. Different investigated genotypes of sugar beet responded to drought stress based on their yield potential. The highest positive correlation of root yield was observed with root dry weight (r=0.977**). Stepwise regression analysis and path coefficient analysis showed that root dry weight and petiole dry weight are the most important traits that can affect root yield of sugar beet under drought stress and can used as selection criteria in investigated cultivars of sugar beet. Finally, 7221 genotypes can be considered as tolerant genotypes in the next studies. In comparison, Jolgeh cultivar (as susceptible control) yielded well in areas with normal irrigation, but under moderate and severely stresses its root yield was reduced.  相似文献   
29.
New bio‐based dietary supplement with micronutrients for livestock was elaborated. The new preparation was tested on laying hens to determine the influence of new biological feed additives on the level of trace elements in egg content. The diet of laying hens (Hy‐Line Brown, 30 weeks of age) was supplemented with soya bean meal enriched with Cu(II), Zn(II), Fe(II) and Cr(III) by biosorption. A total of 150 laying hens were divided into five groups: one control and four experimental. In the control group, microelements were supplemented in the inorganic form, whereas in experimental groups, Cu, Zn, Fe and Cr were replaced with soya bean meal enriched with a given microelement ion. The feeding experiment was conducted for 12 weeks and was divided into three series. The results showed that adding the new feed additives to the diet of laying hens had an impact on microelement transfer to eggs, in particular with increased dosing. Eggs were biofortified with iron, zinc and copper and to a lesser extent with chromium. The microelements were accumulated primarily in the albumen because soy protein was the carrier of micronutrient ions in hens’ diet. Transfer of trace elements to eggs was not linearly dependent on the dosage of biologically bound microelements in the diet.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号