首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
林业   15篇
农学   5篇
基础科学   1篇
  27篇
综合类   2篇
农作物   5篇
水产渔业   6篇
畜牧兽医   23篇
园艺   3篇
植物保护   1篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
51.

Background, Aim and Scope

Continuous application of pesticides may pollute soils and affect non-target organisms. Soil is a complex ecosystem; its components can modulate the effects of pesticides. Therefore, it is recommended to evaluate the potential environmental risk of these compounds in local conditions. We performed an integrated field-laboratory study on an Argentine soya field sprayed with glyphosate and chlorpyrifos under controlled conditions. Our aim was to compare the sensitivity of a series of endpoints for the assessment of adverse effects of the extensive use of these agrochemicals.

Materials and Methods

A RR soya field in a traditional farming area of Argentina was sprayed with glyphosate (GLY) or chlorpyrifos (CPF) formulations at the commercially recommended rates, according to a randomized complete block design with 3 replicates. In laboratory assays, Eisenia fetida andrei were exposed to soil samples (0–10 cm depth) collected between the rows of soya. Endpoints linked to behavior and biological activity (reproduction, avoidance behavior and bait-lamina tests) and cellular/subcellular assays (Neutral Red Retention Time — NRRT; DNA damage — Comet assay) were tested. Field assays included litterbag and bait-lamina tests. Physico/chemical analyses were performed on soil samples.

Results

GLY reduced cocoon viability, decreasing the number of juveniles. Moreover, earthworms avoided soils treated with GLY. No effects on either reproduction or on avoidance were observed at the very low CPF concentration measured in the soils sampled 10 days after treatment. Both pesticides caused a reduction in the feeding activity under laboratory and field conditions. NRRT was responsive to formulations of CPF and GLY. Comet assay showed significantly increased DNA damage in earthworms exposed to CPF treated soils. No significant differences in DNA migration were observed with GLY treated soils. Litterbag field assay showed no differences between treated and control plots.

Discussion

The ecotoxicological effects of pesticides can be assessed by monitoring the status of communities in real ecosystems or through the use of laboratory toxicity tests. Litterbag field test showed no influence of the treatments on the organic matter breakdown, suggesting a scarce contribution of soil macrofauna. The bait-lamina test, however, seemed to be useful for detecting the effects of GLY and CPF treatments on the activity of the soil fauna. CPF failed to give significant differences with the controls in the reproduction test and the results were not conclusive in the avoidance test. Although the field population density of earthworms could be affected by multiple factors, the effects observed on the reproduction and avoidance tests caused by GLY could contribute to its decrease, with the subsequent loss of their beneficial functions. Biomarkers measuring effects on suborganism level could be useful to predict adverse effects on soil organisms and populations. Among them, NRRT, a lysosomal destabilization biomarker, resulted in demonstrating more sensitivity than the reproduction and avoidance tests. The Comet assay was responsive only to CPF. Since DNA damage can have severe consequences on populations, it could be regarded as an important indicator to be used in the assessment of soil health.

Conclusions

Reproduction and avoidance tests were sensitive indicators of GLY exposure, with the former being more labor intensive. Bait-lamina test was sensitive to both CPF and GLY. NRRT and Comet assays revealed alterations at a subcellular level, and could be considered complementary to the biological activity tests. Because of their simplicity, some of these bioassays seemed to be appropriate pre-screening tests, prior to more extensive and invasive testing.

Recommendations and Perspectives

This study showed deleterious effects of GLY and CPF formulations when applied at the nominal concentrations recommended for soya crops. Further validation is needed before these endpoints could be used as field monitoring tools in Argentine soya soils (ecotoxicological risk assessment — ERA tools).
  相似文献   
52.
The aim of this work was to map quantitative trait loci (QTLs) associated with flour yellow color (Fb*) and yellow pigment content (YPC) in durum wheat (Triticum turgidum L. var. durum). Additionally, QTLs affecting flour redness (Fa*) and brightness (FL*) color parameters were investigated. A population of 93 RILs (UC1113 × Kofa) was evaluated in three locations of Argentina over 2 years. High heritability values (>94%) were obtained for Fb* and YPC, whereas FL* and Fa* showed intermediate to high values. The main QTLs affecting Fb* and YPC overlapped on chromosome arms 4AL (4AL.2), 6AL (6AL.2), 7AS, 7AL, 7BS (7BS.2) and 7BL (7BL.2). The 7BL.1 QTL included the Psy-B1 locus, but one additional linked QTL was detected. A novel minor QTL located on 7AS affected Fb*, with an epistatic effect on YPC. An epistatic interaction occurred between the 7AL and 7BL.2 QTLs. The 4AL.2 QTL showed a strong effect on Fb* and was involved in two digenic epistatic interactions. The 6AL.2 QTL explained most of the variation for Fb* and YPC. The main QTLs affecting FL* and Fa* were located on 2BS and 7BL, respectively. These results confirm the complex inheritance of flour color traits and open the possibility of developing perfect markers to improve pasta quality in Argentinean breeding programs.  相似文献   
53.
Biochar amendment to soil has the potential to improve soil quality and increase crop yield. Arbuscular mycorrhizal fungi (AMF ) provide beneficial plant services of stress alleviation with respect to phosphorus (P) deficiency and drought. The aim of this study was to explore interactive effects of biochar with AMF , P fertilization levels and irrigation strategies on growth of potato plants. Potato plants were amended with wood biochar of 0.74 % w/w (B+) or not (B?), fertilized with phosphorus of 0.11 mg P g?1 soil (P1) or not (P0), irrigated with full irrigation (FI ) or partial root‐zone drying irrigation (PRD ) and inoculated with AMF of Rhizophagus irregularis (M+) or not (M?) in split‐root pots in a sandy loam soil. Plants were analysed for growth performance, P and nitrogen (N) uptake and water use efficiency (WUE ). Biochar adsorption of mineral P and N in aqueous solution was tested in subexperiment. B+ significantly decreased plant biomass production except under P0 FI M?, where B+ increased plant biomass. This growth stimulation was counteracted by treatments of P1, PRD and M+. B+ significantly decreased plant leaf area, P and N uptake and WUE , but had no significant effect on root biomass and soil pH. The positive plant growth response to AMF was substantially reduced by biochar amendment. The wood biochar had no adsorption for mineral N, and it had 0.96 % adsorption for mineral P in aqueous solution. The results suggested that the negative effect of wood biochar application on plant growth may due to the reduced plant uptake of P and N and the possibility of phytotoxic effects of wood biochar on potato growth. It was concluded that the wood biochar used in current study had negative impact on plant growth and P/N uptake and it is not recommendable to apply this wood biochar to mycorrhizal agro‐system, to soil fertilized with high rate of P or to soil suffering water deficiency.  相似文献   
54.
Animal slurry can be separated into solid and liquid manure fractions to facilitate the transport of nutrients from livestock farms. In Denmark, untreated slurry is normally applied in spring whereas the solid fraction may be applied in autumn, causing increased risk of nitrate and phosphorus (P) leaching. We studied the leaching of nitrate and P in lysimeters with winter wheat crops (Triticum aestivum L.) after autumn incorporation versus spring surface application of solid manure fractions, and we compared also spring applications of mineral N fertilizer and pig slurry. Leaching was compared on a loamy sand and a sandy loam soil. The leaching experiment lasted for 2 yr, and the whole experiment was replicated twice. Nitrate leaching was generally low (19–34 kg N/ha) after spring applications of mineral fertilizer and manures. Nitrate leaching increased significantly after autumn application of the solid manures, and the extra nitrate leached was equivalent to 23–35% of total manure N and corresponded to the ammonium content of the manures. After spring application of solid manures and pig slurry, only a slight rise in N leaching was observed during the following autumn/winter (<5% of total manure N). Total P leaching was 40–165 g P/ha/yr, and the application of solid manure in autumn did not increase P leaching. The nitrogen fertilizer replacement value of solid manure N was similar after autumn and spring application (17–32% of total N). We conclude that from an environmental perspective, solid manure fractions should not be applied to winter wheat on sandy and sandy loam soils under humid North European conditions.  相似文献   
55.
The procedure for applying phosphorus (P) fertilizer to soil can be divided into three consecutive steps: (i) Measurement of soil‐P availability, (ii) calibration of the soil‐P fertility level and (iii) estimation of the recommended P dose. Information on each of these steps was obtained for 18 European countries and regions with the aim of comparing P fertilizer recommendation systems at the European scale. We collected information on P fertilizer recommendations through conventional or grey literature, and personal contacts with researchers, laboratories and advisory services. We found much variation between countries for each of the three steps: There are more than 10 soil‐P tests currently in use, apparent contradictions in the interpretation of soil‐P test values and more than 3‐fold differences in the P fertilizer recommendations for similar soil‐crop situations. This last result was confirmed by conducting a simple experimental inter‐laboratory comparison. Moreover, soil properties (pH, clay content) and crop species characteristics (P responsiveness) are used in some countries in the calibration and recommendation steps, but in different ways. However, there are also common characteristics: soil‐P availability is determined in all countries by extraction with chemical reagents and the calibration of the soil‐P test values, and the fertilizer recommendations are based on the results from empirical field trials. Moreover, the fertilizer recommendations are nearly all based on the amount of P exported in the crops. As long as rational scientific and theoretical backgrounds are lacking, there is no point in trying to synchronize the different chemical methods used. We therefore call for a mechanistic approach in which the processes involved in plant P nutrition are truly reproduced by a single standard method or simulated by sorption‐desorption models.  相似文献   
56.
A model for individual growth is an important component in the analysis of fishery resources. Time series of body-length frequency data (LFD) contain information on average individual growth, but age is a latent variable and this makes it difficult to extract growth information objectively. A new method is described here that relaxes some of the assumptions of currently available approaches and that can be used even with large gaps in the time series of LFD. The new method is based on a non-Bayesian hierarchical model where the growth model contains hyper-parameters that depend on parameters of normal mixture models underlying the LFD. Growth hyper-parameters are estimated using a multivariate normal marginal-estimated likelihood function. The method is applied to the squat lobster Pleuroncodes monodon with LFD from six surveys, leading to a precise model of individual growth due to the large sample size in the original LFD sets. ADMB computer code and datasets used in this article are supplied as supplemental material.  相似文献   
57.
58.
59.
Silage maize (Zea mays L.) is an important crop for forage on Northwestern European dairy cattle farms. We examined the effect of readily available soil phosphorus (P) on early maize growth and linked in-season height growth to final harvest yield using field plots with contrasting P supply in a one-year study embedded in a long-term experiment. Water-extractable P (Pw) was used as a proxy for readily available P in soil. Plant height, dry matter (DM) accumulation, P and nitrogen (N) uptakes were determined eight times from the two-leaf stage until final whole-crop harvest and fitted to logistic growth models. The models revealed that the final yield was significantly related to the time required to reach the maximum rate of height growth (occurring from 330 to 485 accumulated growing degree units, GDU), but not the time required to reach the maximum rate of DM accumulation (occurring from 561 to 649 GDU). Furthermore, plant height at the four-leaf stage and onwards was significantly related to the final harvest yield. Soil Pw linked closely to height growth parameters; higher levels of Pw gave earlier peaks in height growth. For this light sandy loam with a wide gradient in P content, we conclude that suboptimal P supply postpones height growth and reduces final yields. A sufficient P supply links to an early rapid increase in plant height and forms the potential for optimum nutrient uptake and high forage yields. Thus, early-season plant height may serve as a simple morphometric indicator for final yields.  相似文献   
60.
The Odiel river emerges in Sierra de Aracena (N Huelva, Spain) as a clean, circumneutral river which shows abundant fish and fluvial microfauna. At 20km from the riverhead and along a 7km-long reach, this river receives four small discharges of acid mine water emanating from several abandoned mines of the Iberian Pyrite Belt (namely, Concepción, San Platón, Esperanza and La Poderosa-El Soldado). During two field studies performed in October 2003 and May 2004, it has been observed that these acidic waters (with flow rate of 0.2–8.5L/s and pH 2.3–2.8) transfer to the Odiel river significant amounts of acidity and dissolved metals (specially Fe, Al, Mn, Cu, Zn, Cd, Co and Ni) and sulphate. Despite this mine-related pollution, the pH of the river remains near-neutral (pH = 7–8, flow rate = 220–1,000L/s), as the alkalinity of the river (108–155mg/L CaCO3 eq.) neutralizes the acidity and causes the precipitation of dissolved Fe and Al in the form of ochreous to whitish minerals (ferrihydrite, Al-oxyhydroxides). These poorly crystallized minerals retain, by sorption, large amounts of trace metals (specially Cu and Zn). Subsequently, the Odiel river converges with the acidic Tintillo river (pH = 2.5–2.8, flow rate = 48–240L/s), which drains a vast mining area occupied by large waste-rock piles and tailings impoundments around Corta Atalaya (Riotinto mines). At this confluence, all the alkalinity is totally consumed and the pH drastically decreases to around 3. The mineral paragenesis of the ochreous precipitates is then dominated by schwertmannite, which shows a very limited sorption capacity under such acidic conditions. Consequently, metal concentrations are sharply increased from near-zero to tens of mg/L (e.g., 18mg/L Fe, 76mg/L Al, 14mg/L Mn, 10mg/L Cu, and 20mg/L Zn in May 2004). The buffering capacity of the Fe(III) hydrolysis stabilizes the pH of the Odiel river around 3± 0.5 along the rest of its course to the Huelva estuary, and the water quality of the river is thus irreversibly damaged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号