首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33140篇
  免费   1023篇
  国内免费   1137篇
林业   4813篇
农学   2542篇
基础科学   757篇
  5125篇
综合类   6323篇
农作物   3323篇
水产渔业   2706篇
畜牧兽医   4835篇
园艺   2065篇
植物保护   2811篇
  2024年   90篇
  2023年   292篇
  2022年   590篇
  2021年   723篇
  2020年   590篇
  2019年   604篇
  2018年   3173篇
  2017年   3340篇
  2016年   1755篇
  2015年   803篇
  2014年   808篇
  2013年   980篇
  2012年   2122篇
  2011年   3540篇
  2010年   3244篇
  2009年   2239篇
  2008年   2416篇
  2007年   2591篇
  2006年   950篇
  2005年   825篇
  2004年   631篇
  2003年   518篇
  2002年   497篇
  2001年   306篇
  2000年   300篇
  1999年   182篇
  1998年   92篇
  1997年   63篇
  1996年   71篇
  1995年   62篇
  1994年   42篇
  1993年   65篇
  1992年   68篇
  1991年   44篇
  1990年   51篇
  1989年   58篇
  1988年   52篇
  1987年   51篇
  1986年   22篇
  1985年   33篇
  1984年   26篇
  1983年   30篇
  1981年   24篇
  1978年   24篇
  1977年   24篇
  1976年   30篇
  1974年   22篇
  1973年   22篇
  1972年   24篇
  1971年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
为探索适宜晋南旱地小麦高效生产的耕作模式,以晋麦92为试验材料,设置休闲期深翻/深翻、深松/深翻、深松/深松、常规耕作(对照)4个耕作模式,研究其对土壤水分及养分、作物生长和水分利用效率的影响。结果表明,深翻/深翻、深松/深翻、深松/深松模式较对照休闲末期3m内土壤蓄水量和土壤蓄水效率显著提高,土壤蓄水效率提高达52.5%~91.3%,以深松/深松模式较好;越冬-孕穗期3m内土壤蓄水量提高,且深松/深松模式与对照差异显著;各生育时期单株干物质积累量提高,且越冬-拔节期深松/深松、深松/深翻模式与对照差异显著,孕穗-成熟期各耕作模式与对照差异均显著;穗数、千粒重、产量和水分利用效率显著提高,其中穗数提高22.7%~29.9%,水分利用效率提高15.1%~21.6%,产量提高39.4%~60.3%,以深松/深松模式较好;收获后0~40cm土层土壤有机质平均含量提高2.5%~8.7%,速效磷含量提高11.1%~34.4%,碱解氮含量提高5.1%~20.2%,以深松/深松模式较好。总之,深翻/深翻、深松/深翻、深松/深松模式均能提高土壤蓄水保墒能力,改善养分供应状况,有利于促进小麦干物质积累,最终提高产量和水分利用效率,以深松/深松模式最佳。  相似文献   
992.
为明确杂交中籼水稻在江淮地区种植的适宜播期,提高稻米品质,选用3个杂交中籼水稻品种(系)分5个播期,利用AMMI模型对其营养食味品质性状(糊化温度、胶稠度、直链淀粉含量、蛋白质含量)进行了稳定性和适应性分析。结果表明,糊化温度、胶稠度、直链淀粉含量、蛋白质含量4项指标在基因型间、播期间及基因型×播期互作间的方差均达到极显著水平,这4项指标的交互效应主成分值(IPCA)差异也达到显著水平;穗期(抽穗至成熟期)平均气温较高、累计日照时数长、气温日较差大,有利于杂交中籼水稻品质的提高;3个参试品种(系)营养食味品质稳定性表现为新两优6号两优1128丰两优4号,5个播期对杂交中籼水稻品质影响表现为4月20日5月10日5月20日4月30日5月30日。  相似文献   
993.
针对安徽沿淮地区气候特点,通过试验筛选出适宜沿淮地区旱种旱管栽培,丰产性和稳产性较好的旱稻品种5个,节水耐旱型水稻品种7个;明确了沿淮地区以旱优73为代表的杂交旱稻的丰产节水栽培技术:播种期6月5-12日,播种量2.0 kg/667 m~2左右,氮肥用量10~14 kg/667 m~2;在施肥过程中适当降低基蘖肥用量、增施穗粒肥,基、蘖、穗肥比例以4∶4∶2较好。  相似文献   
994.
New applications call for many new requirements. In order to improve the toughness of aldehyde hyaluronic acid (A-HA) and adipic acid dihydrazide (ADH) hydrogel, the poly(ethylene glycol) (PEG) was added. PEG content and molecular weight have little effect on the gelation time, and the composite hydrogels can form in situ within 20 seconds at room temperature. The press test showed that the hydrogels containing PEG possessed a better compression resistance, after pressed more than five times, the composite hydrogels could restore. Rheological properties were measured to evaluate the working ability and the effect of PEG on hydrogels. By analyzing the shear viscosity (η γ=0.01), yield stress (σ 0) and threshold shear stress (σ c ), the addition of PEG can make the structure of composite hydrogels get loose and improve the shear resistance. Especially, PEG800 can enhance the antishear ability obviously. The amplitude sweep tests showed a broad linear viscoelastic region, indicating a wide processing range. In the meanwhile, we also found that PEG can improve the optical transmittance of xerogel evidently.  相似文献   
995.
In this paper, it was aimed to obtain disposable medical textiles having antibacterial and wound healing properties, as well as biological adaption. For this purpose, the St. John’s Wort oil and flax seed oil were ozonated, and the oils were capsulated with arabic gum. The produced ozonated oils were characterized through FTIR and TGA analyses, as well as the properties of antibacterial, wound healing, and biological adaption were investigated. The produced microcapsules were examined via optical microscope and FTIR. The characterized microcapsules of the ozonated oils were applied to the textiles with padding method. After the applications, the fabrics were researched with SEM and FTIR analyses; in addition the antibacterial and wound healing properties and biological adaption of the textiles were also investigated. The results showed that the St. John’s Wort oil and flax seed oil were successfully ozonated and microcapsulated. The microcapsules of the oils could be applied to the fabric samples with the determined application recipe. The ozonated oils and the fabric samples applied microcapsules of the ozonated oils gained high antibacterial and wound healing property. In addition, the fabric samples were produced as having biological adaptation.  相似文献   
996.
Building proton transfer channel is an important strategy to optimize the proton transfer process of the proton exchange membrane (PEM). In this work, sulfonated pre-oxidized nanofibers were prepared by solution blowing of polyacrylonitrile (PAN) nanofibers followed by pre-oxidization and sulfonating, and the nanofibers were composited with SPEEK to enhance its performance as PEM. The results of the proton conductivity verified that the employment of sulfonated pre-oxidized nanofibers improved the proton conductivity. Meanwhile, the introduction of the sulfonated pre-oxidized nanofibers realized the upgrades of the thermostability and water absorbency of the membrane, and led to the decrease of the swelling property and methyl alcohol’s permeability of the material. It is indicated that the composite membrane is promising materials for PEM fuel cells.  相似文献   
997.
The objective of this research was to survey the effects of starch quaternization and sulfosuccinylation on the adhesion of cold starch paste to raw cotton fibers for cotton warp sizing at low temperature. Acid-thinned cornstarch (ATS) was quaternized and then sulfosuccinylated to introduce 3-(trimethylammonium chloride)-2-hydroxypropyl and sulfosuccinate substituents onto its backbones. The electroneutrality of starch samples prepared was achieved by maintaining a constant mole ratio (5.3:1) of the two substituents. A series of electroneutral cornstarch (ECS) samples with different levels of the substituents were derived by altering the feed ratio of the modifying reagents to starch for determining desirable level of starch modification. Adverse influences of cotton wax and starch retrogradation on the adhesion of cold starch paste to raw cotton fibers were evaluated to illustrate the effectiveness of starch quaternization and sulfosuccinylation. It was found that the modification was able to alleviate the adverse influence of starch retrogradation and ameliorate the adhesion to the fibers at low temperature. Higher level of the modification led to less retrogradation and resulted in strong adhesion. Furthermore, the adverse influence of cotton wax on the adhesion could be eliminated after a pre-wetting treatment of raw cotton warps with hot water. The adhesion of ECS paste to raw cotton at 60 °C was statically the same as that of ATS at 95 °C when total DS of ECS was 0.0443 or higher.  相似文献   
998.
Wool fabric was treated with liquid ammonia at -40 °C for 30 and 60 s prior to the application of polypyrrole (PPy). The polymer was deposited on wool fiber using the chemical oxidation method with 0.02 and 0.05 mol/l (Py) monomer concentration and FeCl3 as a catalyst. Functional groups of wool samples were analyzed using FT-IR, and surface morphology was investigated using SEM micrographs. Properties such as water absorbency, surface resistivity, abrasion resistance, weight add-on, and air permeability of coated specimens were explored. The FT-IR outcomes revealed the liquid ammonia pre-treatment changed the amount of amide I (NH), cystic acid, cystic monoxide, and dioxide content of the fiber. SEM micrographs revealed the descaling of wool surface after pre-treatment and smooth coating of polymer. Pre-treatment of wool in liquid ammonia improved absorbency of wool fabric with respect to the treatment duration. The surface resistivity of wool fabric decreased with the increase of monomer concentration and pre-treatment duration. The results of abrasion resistance confirmed that the pre-treated fabric exhibited lower loss of polymer after 200 cycles of abrasion. The weight of the fabric was increased and air permeability decreased when the monomer concentration and liquid ammonia pre-treatment duration was increased.  相似文献   
999.
Polypyrrole (PPy) film was prepared via in-situ chemical polymerization of pyrrole monomer on the surface of red-clay-brick (RCB) substrate. The deposited PPy film was characterized and used as an adsorbent for removal of benzene polycarboxylic acids from aqueous solutions. The effects of solution pH, contact time, initial concentration, and temperature on the adsorption process were systematically investigated to find the optimum operating conditions. Adsorption kinetic data were best fitted by pseudo-second order kinetic model. The adsorption equilibrium data were most represented by the Freundlich isotherm model. The maximum adsorption amounts of Trimellitic, Hemimellitic, and Pyromellitic acids were 189.27, 177.26, and 203.31 mg/g, respectively. The thermodynamic studies indicate that the adsorption was an endothermic and spontaneous process. Also, the PPy-RCB film was successfully regenerated using sodium hydroxide solution. The regenerated PPy-RCB can be reused for more than four successive cycles with a low reduction in adsorption efficiency.  相似文献   
1000.
This account showed that nanometer-active calcium carbonate (CaCO3) improved polyamide 1010/organic montmorillonite (OMMT) composites and OMMT boosted polyamide 1010/CaCO3. The mechanical performance suggested the composites to be reinforced through adsorption forces present between the nanofillers and the matrix. The synergistic effect of CaCO3 and OMMT increased the yields and shrunk cavities when observed by scanning electron microscopy. The obvious resulting synergism was verified by X-ray scattering techniques after the addition of OMMT. The concentration of CaCO3 did not change lamellar-size or influence the crystal growth. The effect of CaCO3 on melting behavior was found less significant than that exert on crystallization behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号