首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   29篇
林业   92篇
农学   8篇
基础科学   1篇
  130篇
综合类   44篇
农作物   18篇
水产渔业   31篇
畜牧兽医   221篇
园艺   27篇
植物保护   73篇
  2023年   8篇
  2022年   4篇
  2021年   4篇
  2020年   13篇
  2019年   16篇
  2018年   14篇
  2017年   4篇
  2016年   13篇
  2015年   6篇
  2014年   16篇
  2013年   32篇
  2012年   41篇
  2011年   54篇
  2010年   25篇
  2009年   25篇
  2008年   42篇
  2007年   31篇
  2006年   35篇
  2005年   38篇
  2004年   31篇
  2003年   31篇
  2002年   20篇
  2001年   9篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1995年   4篇
  1992年   4篇
  1988年   4篇
  1986年   2篇
  1984年   4篇
  1978年   3篇
  1976年   3篇
  1968年   3篇
  1967年   2篇
  1966年   3篇
  1965年   2篇
  1964年   2篇
  1963年   2篇
  1962年   2篇
  1959年   2篇
  1954年   3篇
  1941年   4篇
  1937年   12篇
  1935年   9篇
  1934年   5篇
  1933年   8篇
  1927年   2篇
  1916年   2篇
排序方式: 共有645条查询结果,搜索用时 15 毫秒
581.
582.
583.
Johnsen  Kurt H.  Major  John E. 《New Forests》1998,15(3):271-281
Seedlings from 20 families of black spruce (Picea mariana (Mill.) B.S.P.), representing a large range in field productivity, were subjected to a greenhouse retrospective test under ambient (409 ppm – year 1, 384 ppm – year 2) and high (686 ppm – year 1, 711 ppm – year 2) atmospheric CO2 environments. After one and two growth cycles, seedling height and diameter growth significantly increased under elevated CO2. At the end of the experiment, seedlings grown under high CO2 had a mean above-ground dry weight of 48.77 g as compared to 26.36 g for seedlings grown under ambient atmospheric CO2. Families were a significant source of variation for all growth parameters. Although the family × CO2 environment interaction was not a statistically significant source of variation in the analysis of variance, the correlation between greenhouse and 15-year field height growth was weaker (r = 0.29, p = 0.2177) under elevated CO2 compared to ambient CO2 (r = 0.51, p = 0.0223) following the first growth cycle. However, following the second growth cycle, greenhouse-field correlations were similar between the two CO2 environments (ambient CO2: r = 0.55, p = 0.0115; elevated CO2: r = 0.56, p = 0.0101). Thus, with this set of families, growth performance ranking after two years appears relatively stable under ambient and elevated CO2.  相似文献   
584.
With the U.S. fuel ethanol industry projected to grow during the next several years, supplies of distillers dried grains with solubles (DDGS) are anticipated to continue to grow as well. DDGS is used primarily as livestock feed. Much of the DDGS must be shipped, often over large distances, outside the Corn Belt (which is where most of the corn‐based ethanol plants are currently located). Stickiness and caking among particles is a common issue for DDGS, and it often leads to flowability problems. To address this, the objective of this study was to understand the cross‐sectional and surface natures of DDGS particles from five ethanol plants, and how they interact with DDGS properties. This study examined the distribution patterns of chemical components within cross‐sections, within section edges (i.e., surface layers), and on surfaces using standard staining techniques; chemical composition was determined using standard protocols; and physical and flowability properties were also determined. Crude protein in the samples was 28.33–30.65% db, crude fat was 9.40–10.98% db, and neutral detergent fiber (NDF) was 31.84–39.90% db. Moisture contents were 4.61–8.08% db, and geometric mean diameters were 0.37–0.52 mm. Cross‐sectional staining showed protein levels of 19.57–40.39%, and carbohydrate levels of 22.17–43.06%, depending on the particle size examined and the production plant from which the DDGS was sampled. Staining of DDGS particles indicated a higher amount of surface layer protein compared with carbohydrate thickness in DDGS particles that had a lower flow function index (which indicated potential flow issues). Additionally, surface fat staining suggested that higher surface fat also occurred in samples with worse flow problems. This study represents another step toward understanding why DDGS particles stick together during storage and transport, and will hopefully help to improve DDGS material handling strategies.  相似文献   
585.
The principal defense of tropical forests has been to designate them as protected areas, but few of these protected areas have been studied to determine their effectiveness at preventing forest clearance within their boundaries. We used remote sensing techniques to quantify three fundamental forest cover change processes: forest clearance, re-growth and fragmentation over a 19-year time period, in a National Park of Jamaica. Results show that forest clearance occurred at similar high levels prior and subsequent to the establishment of the area as a National Park in 1993: 1.50% yr−1 (1983–1992) and 1.42% yr−1 (1992–2002), respectively. Fragmentation continued post-establishment, and manifested itself in an increasing number of smaller more vulnerable fragments; the number of fragments increased by 60%, and the mean fragment size decreased by 40%. Core areas decreased with ensuing increases in edge lengths, and fragments became more isolated from one another. After designation as a National Park however, increased forest re-growth occurred, resulting in a 63% decline in the net deforestation rate from 0.80% yr−1 (1983–1992) to 0.26% yr−1 (1992–2002). Image classifications gave accuracies of 90–97% (Kappa 0.80–0.93). Although the decrease in net deforestation may indicate some level of success of this National Park, forest clearance and fragmentation, leading to species shifts and biodiversity loss were still present at pre-National Park levels. We then examined the preponderance of successful protected areas, and found that success may be an artifact of the most widely used method of assessment, which compares deforestation rates inside versus outside protected areas.  相似文献   
586.
Biological invasions constitute one of the most important threats to biodiversity. This is especially true for “naïve” birds that have evolved in the absence of terrestrial predators in island ecosystems. The American mink (Mustela vison) has recently established a feral population on Navarino Island (55°S), southern Chile, where it represents a new guild of terrestrial mammal predators. We investigated the impact of mink on ground-nesting coastal waterbirds with the aim of deriving a vulnerability profile for birds as a function of different breeding strategies, habitat, and nest characteristics. We compared rates of nest survival and mink predation on 102 nests of solitary nesting species (Chloephaga picta, Tachyeres pteneres), on 361 nests of colonial birds (Larus dominicanus, Larus scoresbii, Sterna hirundinacea), and on 558 artificial nests. We calculated relative mink and bird densities at all nest sites. Nests of colonial species showed the highest nest survival probabilities (67-84%) and no predation by mink. Nest survival rates for solitary nesting species were lower (5-20%) and mink predation rates higher (10-44%). Discriminant analyses revealed that mink preyed upon artificial nests mainly at shores with rocky outcroppings where mink were abundant. High nest concealment increased the probability for predation by mink. Conservation planning should consider that invasive mink might severely affect the reproduction success of bird species with the following characteristics: solitary nesting, nesting habitat at rocky outcrop shores, and concealed nests. We recommend that work starts immediately to control the mink population with a priority in the nesting habitats of vulnerable endemic waterbirds.  相似文献   
587.
Eighty isolates ofVerticillium dahliae from the southeastern Anatolia region and 20 isolates from the east Mediterranean region from wilted cotton plants were used for vegetative compatibility analysis employing nitrate non-utilizing mutants and reference tester strains of vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B. Of the 100V. dahliae isolates, 49 were assigned to VCG1A, 39 to VCG2B, nine to VCG2A and three to VCG4B. Pathogenicity assays were conducted on susceptible cotton cv. Çukurova 1518 in the greenhouse. All VCG1A isolates induced defoliation and all VCG2B isolates caused partial defoliation symptoms. Isolates of VCG2A and VCG4B caused typical symptoms of leaf chlorosis without defoliation. This is the first report on VCGs ofV. dahliae in the southeastern Anatolia region of Turkey, which demonstrates that VCG1A of the cotton-defoliating type and VCG2B of the partially defoliating type are prevalent in this region.  相似文献   
588.
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in the free air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). Measurements of sap flux and canopy leaf area index (L) were made during two growing seasons, when steady-state L had been reached after more than 6 years of exposure to elevated [CO2] and [O3]. Maximum stand-level sap flux was not significantly affected by elevated [O3], but was increased by 18% by elevated [CO2] averaged across years, communities and O(3) regimes. Treatment effects were similar in pure aspen and mixed aspen-birch communities. Increased tree water use in response to elevated [CO2] was related to positive CO2 treatment effects on tree size and L (+40%). Tree water use was not reduced by elevated [O3] despite strong negative O3 treatment effects on tree size and L (-22%). Elevated [O3] predisposed pure aspen stands to drought-induced sap flux reductions, whereas increased tree water use in response to elevated [CO2] did not result in lower soil water content in the upper soil or decreasing sap flux relative to control values during dry periods. Maintenance of soil water content in the upper soil in the elevated [CO2] treatment was at least partly a function of enhanced soil water-holding capacity, probably a result of increased organic matter content from increased litter inputs. Our findings that larger trees growing in elevated [CO2] used more water and that tree size, but not maximal water use, was negatively affected by elevated [O3] suggest that the long-term cumulative effects on stand structure may be more important than the expected primary stomatal closure responses to elevated [CO2] and [O3] in determining stand-level water use under possible future atmospheric conditions.  相似文献   
589.
Gradients of light and moisture availability peak at different positions within canopy gaps in northern latitudes providing the opportunity for niche partitioning in and around gaps based on differences in individual species’ life history attributes. This gap partitioning offers potential for increasing diversity in forests impacted by gap-creating disturbances. We examined resource availability and the physiological performance of three Pinus species with varying tolerances for shade and moisture stress across large (0.3 ha) canopy gaps to investigate relationships between gap position and species performance. Light availability was lowest in southern gap edges, while water availability was lowest in northern edges, and higher at gap interior positions than edges. Pinus banksiana seedlings had higher light-saturated CO2 assimilation rates than P. resinosa or P. strobus seedlings at interior gap positions, and outperformed P. strobus at northern gap edges, but there were no differences between species at southern edges. Both transpiration and stomatal conductance were greatest for P. banksiana in gap centers, but showed few differences between species at edges. Foliar nitrogen concentrations were highest for P. banksiana, suggesting the dominance of this species in central gap locations may be due to a combination of high photosynthetic capacity and tight stomatal control to regulate moisture stress at drier gap positions. Our results suggest P. banksiana seedlings may be competitively superior in gap positions with high light and moisture availability, but P. resinosa and P. strobus become competitive under the drier conditions and moderate shade near gap edges. These findings support the concept of gap partitioning, and suggest silvicultural systems that incorporate patch cuttings could be used to promote diverse regeneration in northern pine forests.  相似文献   
590.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号