首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   63篇
  国内免费   1篇
林业   117篇
农学   44篇
基础科学   14篇
  237篇
综合类   47篇
农作物   74篇
水产渔业   176篇
畜牧兽医   313篇
园艺   22篇
植物保护   80篇
  2024年   2篇
  2023年   10篇
  2022年   22篇
  2021年   32篇
  2020年   42篇
  2019年   46篇
  2018年   38篇
  2017年   49篇
  2016年   53篇
  2015年   29篇
  2014年   56篇
  2013年   61篇
  2012年   70篇
  2011年   89篇
  2010年   52篇
  2009年   50篇
  2008年   76篇
  2007年   57篇
  2006年   47篇
  2005年   51篇
  2004年   53篇
  2003年   48篇
  2002年   25篇
  2001年   12篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1981年   2篇
  1976年   1篇
  1972年   1篇
  1970年   2篇
  1962年   1篇
排序方式: 共有1124条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
Here we studied the effects of gut transit through the earthworm Eudrilus eugeniae, on the physicochemical, biochemical, and microbial characteristics of pig slurry, by analyzing fresh casts. The reduction in the dissolved organic C contents in casts we recorded suggests that during digestion, earthworms assimilated labile organic C preferentially, which is a limiting growth factor for them. Furthermore, both microbial biomass and activity in pig slurry were significantly decreased by earthworm gut transit. It appears that E. eugeniae is able to digest microorganisms, although the addition of glucose to the food increased respiration, indicating that growth of microorganisms in casts could be limited by depletion of labile C. Despite reduced microbial biomass and activity, the metabolic diversity of microbial communities was greater in casts than in original pig slurry. Community level physiological profiles obtained from Biolog Ecoplate data revealed that, after earthworm gut transit, the microbial communities in casts and pig slurry were clearly differentiated by their physiological profiles. The results indicate that first stage in vermicomposting of pig slurry by E. eugeniae, i.e., casting, produced changes that will influence the dynamics of the organic matter degradation by reducing forms of N and C available to microorganisms, hence restricting their growth and multiplication. Nevertheless, the reduced microflora of casts was characterized by an increased catabolic potential that might lead to thorough degradation of pig slurry.  相似文献   
995.
ABSTRACT

The incorporation of previous crop residues in agricultural management benefits soil fertility, crop production, and environment. However, there is no enough information about maximum residue application level without negative effect over next crop yield. To evaluate maize (Zea mays L.) yield under short-time conservation management with incorporation and/or importation of different residue levels, a biannual rotation experiment was conducted in ash volcanic soil in south-central Chile. The experiment consisted of two previous crops, canola (Brassica napus L.) and bean (Phaseolus vulgaris L.), and four levels of residue incorporation (0%, 50%, 100%, and 200% of generated residue; from 0 to 21.4?Mg?ha?1 for canola and from 0 to 19.0?Mg?ha?1 for bean). Previous crop species and residue level affected some nutrients concentrations in grain and plant and some soil chemical properties, without effect in maize yield, which averaged 16.6?Mg?ha?1. Bean residue increased Ca and reduced S in maize plant, increasing soil P, Ca, Mg and K (P?<?0.05). Maize grain Ca content was positively and proportionally affected by canola residue level and negatively and proportionally affected by bean residue level. All canola residue levels increased soil pH and Mg, but the highest level reduced soil S; soil P concentration increased proportionally with bean residue level. The highest bean residue level increased soil S. Different crop and levels of residue did not affect maize yield but did some plant nutrient concentration, and also affected some soil chemical properties.  相似文献   
996.
We present a segmented partial least squares (PLS) prediction model for firmness of ‘Rocha’ pear (Pyrus communis L.) during fruit ripening under shelf-life conditions. Pears were collected from three different orchards. Orchard I provided the pears for model calibration and internal validation (set 1). These were transferred to shelf-life in the dark at 20 ± 2 °C and 70% RH, immediately after harvest. External validation was performed on the pears from the other two orchards (sets 2 and 3), which were stored under different conditions before shelf-life. Fruit was followed in the shelf-life period by visible/near infrared reflectance spectroscopy (Vis/NIRS) in the range 400–950 nm. The correlation between firmness and the reflectance at some wavelength bands was markedly different depending on ripening stage. A segmented partial least squares model was then constructed to predict firmness. This PLS model has two segments: (1) unripe and ripening/ripe pears (high firmness); (2) over-ripe pears (low firmness). The prediction is done in two steps. First, a full range model (full model) is applied. When the full model prediction gives a low firmness value, then the over-ripe model is applied to refine the prediction. The full model is reasonably significant in regression terms, robust, but allows only a coarse quantitative prediction (standard deviation ratio, SDR = 2.48, 1.50 and 2.40 for sets 1, 2 and 3, respectively). Also, RMSEP% = 139%, 91% and 56%, indicating large relative errors at low firmness values. The segmented model improved moderately the correlation, and the values of RMSEC, RMSEP and SDR; it improved significantly the RMSEP% (29%, 55% and 31%), providing an improvement of the relative prediction errors at low firmness values. This method improves the ordinary PLS models. Finally, we tested whether chlorophyll alone was enough for a predictive model for firmness, but the results showed that the absorption of chlorophyll alone does not explain the performance of the PLS models.  相似文献   
997.
Journal of Soils and Sediments - The objective of this work was to modify minimally two agro-industrial wastes, to evaluate their effectiveness for the retention of copper in soils contaminated by...  相似文献   
998.
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.  相似文献   
999.
Journal of Plant Diseases and Protection - The soursop (Annona muricata) is an important tropical plant in the Pacific and Gulf region of México. In a farmer plantation during May, severe soft...  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号