The germplasm of cultivated common bean exhibits a lower level of genetic diversity within each geographical gene pools (Mesoamerican
and Andean) compared to that of the respective wild ancestors. Crosses between these two gene pools potentially provide a
source of additional genetic diversity but their progenies have been characterized by phenotypic abnormalities and reduced
productivity. In order to gain additional insights into this problem, we examined the segregation for performance in two recombinant
inbred populations (RIPs) resulting from Mesoamerican × Andean crosses in three contrasting environments and two years. The
two RIPs – ‘California Dark Red Kidney’ (of Andean origin) × ‘Yolano’ (Mesoamerican), n = 150, and A55 (Mesoamerican) × G122
(Andean), n = 67 – were grown in replicated field tests to assess the agronomic performance of each recombinant inbred line.
Both populations exhibited, on average, greater days to maturity (DTM), lower biomass growth rate (above-ground dry weight/DTM),
lower economic growth rate (seed yield/DTM), and lesser harvest index. In contrast with the conclusions of earlier experiments,
there was no evidence from the field trials for a genetic association (due to linkage or pleiotropy) between seed weight and
economic growth rate, but there may be a genetic association between seed weight and life cycle length. We compare the results
of these studies with earlier experiments on inter-gene pool recombinant populations of common beans and relate our observations
of diminished performance to models of speciation mechanisms.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
Phymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.
Changes in net carbon assimilation and water status were studied during leaf development in the deciduous, tropical species Brachystegia spiciformis Benth. In this upland savanna African tree, bud-burst and leaf development occur approximately two months before the rainy season. The newly formed leaves synthesize anthocyanin until the fully expanded leaves of the whole canopy are red. This foliage is referred to as "spring flush" foliage. Subsequently, the anthocyanins are metabolized and the pre-rain leaves become green. Carbon dioxide assimilation exhibited a bimodal diurnal pattern and was similar for pre-rain green leaves and fully expanded flushing leaves, although pre-rain green leaves showed a net uptake of carbon throughout the daylight period, whereas flushing leaves exhibited only brief periods of net photosynthesis in the morning and early afternoon. Measurements of leaf water potential and relative water content showed a diurnal pattern with considerable variation throughout the day. Leaf water potential and relative water content values decreased soon after sunrise reaching a minimum at a time corresponding to the afternoon peak in CO(2) assimilation. Stomatal conductance was closely related to transpiration rate in both flushing and pre-rain green leaves, although flushing leaves had lower stomatal conductances than pre-rain green leaves. Pre-rain green leaves exhibited a compensation irradiance of approximately 180 micro mol m(-2) s(-1), whereas flushing leaves had positive net photosynthesis only at PPFDs greater than 300 micro mol m(-2) s(-1). Rate of photosynthesis (expressed per leaf area or chlorophyll unit) increased as anthocyanin concentration decreased, although the photosynthetic rate continued to increase long after the leaf anthocyanins had been degraded to low, visually undetectable amounts. Post-rain green leaves had chlorophyll concentrations, transpiration rates and stomatal conductances similar to those of pre-rain green leaves; however, photosynthetic rates in post-rain leaves were more than three times higher. Thus, during the early stages of the spring flush, carbon asimilation rates of the flushing leaves were inversely related to leaf anthocyanin concentrations. In pre-rain green leaves, photosynthesis was limited by other non-stomatal factors. 相似文献
Wildfire effects on understory shrubs and herbs, regeneration of the seedling and sapling size classes, and downed and dead fuels were assessed in a mixed conifer stand located in the Lake Tahoe Basin in which California white fir (Abies concolor var. lowiana [Gord.] Lemm.) was most abundant but with Jeffrey pine (Pinus jeffreyi Grev. & Balf.) also prevalent. In burned and unburned stand portions, prefire measurements served as a basis of comparison for the postfire measurements pertinent to each study component. Fire severely suppressed the understory vegetation, which was dominated by shrubs such as bush chinquapin (Chrysolepis sempervirens [Kellogg] Hjelmqvist) and antelope bitterbrush (Purshia tridentata [Pursh] DC.), while a tepid postfire recovery of most of the preexisting species in the burned stand portion was augmented by new ones, including shrubs such as snowbrush (Ceanothus velutinus Douglas ex Hook.) and whitethorn (Ceanothus cordulatus Kellogg) ceanothus and herbs such as Holboell's rockcress (Arabis holboellii Hornem.). Tree seedling abundance was also substantially reduced in the burned portion, but the postfire population was dominated by Jeffrey pine whereas white fir had been most prevalent originally. Sapling regeneration was eliminated from the burned stand portion regardless of species. Downed and dead fuel loading was severely diminished by the fire, especially regarding fine fuels, permitting subsequent sheet erosion to imperil new seedling regeneration. These results contribute to an understanding of the direction and pace of postwildfire succession on sites occupied by Sierra Nevada mixed conifer and similar forest cover types, which is critical in decisions concerning the need for, and extent of, postfire site rehabilitation measures. 相似文献
A Master Plan for Nepal’s Forestry Sector (MPFS), enacted in 1989, and subsequent legislation laid the foundation for modern community-based forest management in Nepal. In 2014, the MPFS reached the end of its 25-yr lifespan, after successfully ushering in significant institutional changes that fundamentally transformed the management of Nepal’s forests, mostly through devolving management and benefits from the national level to local communities. Here, we use the 25-yr anniversary of the MPFS to explore forest cover trends in the buffer zone surrounding Chitwan National Park (CNP). Landsat imagery was used for the years 1989, 2005, and 2013 to compute a normalized difference vegetation index (NDVI) to analyze trends in forest cover for 36 buffer zone village development committees (VDCs). The analysis, covering approximately 1,267 km2, found that since the MPFS was enacted, there was first a continued decrease in forest cover, followed by a significant recovery. These data offer insight into the success of modern community-based forest management policies and supporting institutions, and provide a model for other efforts to conserve forest resources in Nepal and elsewhere. 相似文献
Low water availability reduces the establishment of the invasive shrub Prosopis on some grasslands. Water deficit survival and traits that may contribute to the postponement or tolerance of plant dehydration were measured on seedlings of P. glandulosa Torr. var. glandulosa (honey mesquite) grown at CO(2) concentrations of 370 (ambient), 710, and 1050 micro mol mol(-1). Because elevated CO(2) decreases stomatal conductance, the number of seedlings per container in the elevated CO(2) treatments was increased to ensure that soil water content was depleted at similar rates in all treatments. Seedlings grown at elevated CO(2) had a greater root biomass and a higher ratio of lateral root to total root biomass than those grown at ambient CO(2) concentration; however, these seedlings also shed more leaves and retained smaller leaves. These changes, together with a reduced transpiration/leaf area ratio at elevated CO(2), may have contributed to a slight increase in xylem pressure potentials of seedlings in the 1050 micro mol mol(-1) CO(2) treatment during the first 37 days of growth (0.26 to 0.40 MPa). Osmotic potential was not affected by CO(2) treatment. Increasing the CO(2) concentration to 710 and 1050 micro mol mol(-1) more than doubled the percentage survival of seedlings from which water was withheld for 65 days. Carbon dioxide enrichment significantly increased survival from 0% to about 40% among seedlings that experienced the lowest soil water content. By increasing seedling survival of drought, rising atmospheric CO(2) concentration may increase abundance of P. glandulosa on grasslands where low water availability limits its establishment. 相似文献
Varroa destructor is considered a major reason for high loss rate of Western honey bee (Apis mellifera) colonies. To prevent colony losses caused by V. destructor, it is necessary to actively manage the mite population. Beekeepers, particularly commercial beekeepers, have few alternative treatments other than synthetic acaricides to control the parasite, resulting in intensive treatment regimens that led to the evolution of resistance in mite populations. To investigate the mechanism of the resistance to amitraz detected in V. destructor mites from French and U.S. apiaries, we identified and characterized octopamine and tyramine receptors (the known targets of amitraz) in this species. The comparison of sequences obtained from mites collected from different apiaries with different treatment regimens, showed that the amino acid substitutions N87S or Y215H in the OctβR were associated with treatment failures reported in French or U.S. apiaries, respectively. Based on our findings, we have developed and tested two high throughput diagnostic assays based on TaqMan technology able to accurately detect mites carrying the mutations in this receptor. This valuable information may be of help for beekeepers when selecting the most suitable acaricide to manage V. destructor.
The interior west of North America provides many opportunities to study ecosystem responses to climate change, biological diversity and management of disturbance regimes. These ecosystem responses are not unique to the Rocky Mountains, but they epitomize similar scientific problems throughout North America. Better management of these ecosystems depends on a thorough understanding of the underlying biology and ecological interactions of the species that occupy the diverse habitats of this region. This review highlights progress in research to understand aspects of this complex ecosystem. 相似文献