首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8693篇
  免费   551篇
  国内免费   50篇
林业   554篇
农学   439篇
基础科学   79篇
  1533篇
综合类   620篇
农作物   453篇
水产渔业   675篇
畜牧兽医   4023篇
园艺   124篇
植物保护   794篇
  2023年   78篇
  2022年   149篇
  2021年   270篇
  2020年   257篇
  2019年   320篇
  2018年   293篇
  2017年   308篇
  2016年   329篇
  2015年   224篇
  2014年   311篇
  2013年   496篇
  2012年   492篇
  2011年   534篇
  2010年   266篇
  2009年   300篇
  2008年   433篇
  2007年   429篇
  2006年   386篇
  2005年   356篇
  2004年   335篇
  2003年   291篇
  2002年   333篇
  2001年   245篇
  2000年   242篇
  1999年   206篇
  1998年   59篇
  1997年   57篇
  1996年   56篇
  1995年   52篇
  1994年   37篇
  1993年   38篇
  1992年   80篇
  1991年   52篇
  1990年   62篇
  1989年   68篇
  1988年   65篇
  1987年   51篇
  1986年   46篇
  1985年   59篇
  1984年   38篇
  1983年   43篇
  1982年   32篇
  1980年   23篇
  1979年   37篇
  1978年   21篇
  1977年   21篇
  1974年   23篇
  1973年   25篇
  1972年   24篇
  1970年   26篇
排序方式: 共有9294条查询结果,搜索用时 15 毫秒
31.
Anthropogenic conversion of primary forest to pasture for cattle production is still frequent in the Amazon Basin. Practices adopted by ranchers to restore productivity to degraded pasture have the potential to alter soil N availability and N gas losses from soils. We examined short-term (35 days) effects of tillage prior to pasture re-establishment on soil N availability, CO2, NO and N2O fluxes and microbial biomass C and N under degraded pasture at Nova Vida ranch, Rondônia, Brazilian Amazon. We collected soil samples and measured gas fluxes in tilled and control (non tilled pasture) 12 times at equally spaced intervals during October 2001 to quantify the effect of tillage. Maximum soil NH4+ and NO3 pools were 13.2 and 6.3 kg N ha−1 respectively after tillage compared to 0.24 and 6.3 kg N ha−1 in the control. Carbon dioxide flux ranged from 118 to 181 mg C–CO2 m2 h−1 in the control (non-tilled) and from 110 to 235 mg C–CO2 m2 h−1 when tilled. Microbial biomass C varied from 365 to 461 μg g−1 in the control and from 248 to 535 μg g−1 when tilled. The values for N2O fluxes ranged from 1.22 to 96.9 μg N m−2 h−1 in the tilled plots with a maximum 3 days after the second tilling. Variability in NO flux in the control and when tilled was consistent with previous measures of NO emissions from pasture at Nova Vida. When tilled, the NO/N2O ratio remained <1 after the first tilling suggesting that denitrification dominated N cycling. The effects of tilling on microbial parameters were less clear, except for a decrease in qCO2 and an increase in microbial biomass C/N immediately after tilling. Our results suggest that restoration of degraded pastures with tillage will lead to less C matter, at least initially. Further long-term research is needed.  相似文献   
32.
This study examined the variations in soil physical, chemical and biological properties from Agave angustifolia fields in three sites with different topographic conditions (valley, hill and mountain), in Oaxaca, Mexico, associated with the tillage systems, disk ploughing (DP), animal drawn ploughing (ADP) and minimum tillage (MT), respectively. Plant ages were 1.5–3.5 years (class 1), 3.6–5.5 years (class 2) and 5.6–7.5 years (class 3). Soil samples were taken at two soil depths (0–20 and 21–40 cm) from plots of 4000 m2 within each site and plant age classes, during the spring of 2005. The main changes in soil properties were found in the mountain site. Soil bulk density (2.0 g cm−3), cone penetration resistance (CPR) (3.96 MPa), 0.7 and 1.0 mm water stable aggregates (WSA) (28.3 g kg−1 and 102.2 g kg−1, respectively) were higher in the mountain site than in the hill and valley fields. This result is consistent with the rocky substrate beneath the shallow soil. Soil organic carbon (SOC) (23.9 g kg−1), available N (23.1 mg kg−1) and soil microbial biomass carbon (SMBC) (969.6 μg g−1) at the mountain site showed the highest values, suggesting that MT practiced in this topographic condition favours the organic matter accumulation and biological activity. Soil microbial biomass carbon and SOC seem to be the soil properties that were mainly affected by the sites and soil management associated with them. For the three sites, SOC, POlsen, available N, exchangeable Na+ and SMBC were higher at 0–20 cm depth than at 21–40 cm depth within each site. Exchangeable Ca2+ and K+, POlsen and CPR increased with plant age. In contrast, available N decreased. Soil chemical properties were more affected by the age of the plant than physical and biological properties. Results reported here represent a reference of the fertility properties of soils cultivated with A. angustifolia, which could be used in further studies focused on management and tillage systems.  相似文献   
33.
Background, Aims and Scope  Disposal of dredged material in subaqueous depots is increasingly considered an economic and ecologically sound option in managing contaminated dredged material. The concept of subaqueous disposals capped with active barrier systems has been developed to minimize this risk of contaminant release. As such a depot represents a permanent installation within a sensitive ecosystem, it requires a thorough monitoring concept. It is the goal of this work to develop such a concept regarding general considerations and results of laboratory and field investigations. Methods  In addition to the state-of-the-art techniques developed for other under-water constructions, this monitoring concept is developed with particular respect to the chemical isolation of the dredged material from the overlying water body. It comprises the use of seepage meters, dialysis samplers, and DGT gel probes for determining the migration of selected target solutes. The capability of the dialysis samplers is demonstrated by comparing field results with model calculations. The appropriateness of DGT probes to assess the impact of humic substances on trace metal speciation and on copper toxicity is demonstrated with the aid of laboratory experiments. Results and Discussion  The experimental results show that, by using dialysis samplers, the temporal changes in concentration-depth-profiles of heavy metals in the pore solution can be monitored. Additionally, the application of DGT probes facilitates the in situ detection of labile species of a metal in the presence of dissolved humic substances, which serves to reflect its toxicity. Conclusions. Three subsequent monitoring phases are distinguished on the basis of both general considerations and the findings from field results: A hydraulic phase that is characterized by compaction and pore water expulsion, a geochemical phase in which the demobilization of pollutants can occur due to substantial changes in the physico-chemical conditions (pH, EH), and a steady-state-phase where pore water flow and geochemical conditions are approaching their minimum. Recommendations and Outlook  The monitoring concept suggested here provides a versatile tool to assess the chemical isolation of subaqueous sediment depots and other contaminated sediment sites. This is of great importance as subaqueous disposal is increasingly considered a future management strategy as space for upland disposal is limited and treatment, in general, proves to be too costly.  相似文献   
34.

Goal  

Annually, 400.000 m3 harbour sediments are dredged to maintain the water depth in the harbours of Bremen and Bremerhaven. The sediment contains organic and inorganic pollutants and hence is deposited on a landfill. Because of the limited capacity of that landfill alternative treatment techniques are investigated. This study aims to evaluate the production of Light Weight Aggregates (LWA) from harbour sediments with respect to the product quality and environmental aspects of the use of the LWA.  相似文献   
35.
The effects of charcoal production on soil textural and chemical properties were investigated in Ejura, Ghana. The aim was to study the effects of heating and charcoal residue on maize yield, soil texture and soil chemical properties. Composite samples were taken from the 0–10 cm layer of soil at charcoal-making sites and from adjacent fields (control). Twelve sites were randomly selected for the study across the range of the Kotokosu watershed. Maize was planted in four selected locations on charcoal site soils (CSS) and adjacent field soils (AFS) to assess the impact of charcoal production on crop yield. There was a significant increase in soil pH, base saturation, electrical conductivity, exchangeable Ca, Mg, K, Na and available P in the soil at the kiln sites as compared to the adjacent soils. A relative change of up to 329% was observed in K while organic C and total N decreased by 9.8% and 12.8%, respectively. Organic C and total N were highly correlated ( P <0.01) and both parameters significantly ( P <0.05) depended on clay minerals in the soils. Soil texture was also modified with a significantly higher sand content and lower clay fraction in the CSS. The grain and biomass yield of maize increased by 91% and 44%, respectively, on CSS as compared to AFS. Further research to ascertain the long-term effects of charcoal production on the soil environment and the fertility of tropical soils is needed.  相似文献   
36.
The photosensitized isomerization reaction of the natural cis carotenoid bixin (methyl hydrogen 9'-cis-6, 6'-diapocarotene-6, 6'-dioate) with rose bengal or methylene blue as the sensitizer in acetonitrile/methanol (1:1) solution was studied using UV-vis spectroscopy, high-performance liquid chromatography (HPLC), and time-resolved spectroscopic techniques, such as laser-flash photolysis and singlet oxygen phosphorescence detection. In both N(2)- and air-saturated solutions, the main product formed was all-trans-bixin. The observed isomerization rate constants, k(obs), decreased in the presence of air or with increase in the bixin concentration, suggesting the participation of the excited triplet state of bixin, (3)Bix, as precursor of the cis--> trans process. On the other hand, bixin solutions in the absence of sensitizer and/or light did not degrade, indicating that the ground state of bixin is stable to thermal isomerization at room temperature. Time-resolved spectroscopic experiments confirmed the formation of the excited triplet state of bixin and its deactivation by ground state bixin and molecular oxygen quenching processes. The primary isomerization products only degraded in the presence of air and under prolonged illumination conditions, probably due to the formation of oxidation products by reaction with singlet molecular oxygen. An energy-transfer mechanism was used to explain the observed results for the bixin transformations, and the consequences for food color are discussed.  相似文献   
37.
Humic substances improve the efficiency of different iron (Fe) sources overcoming Fe deficiency chlorosis of plants. However, applied at high rates, they can promote negative effects on plants. The main objective of this work was to study the potential adverse effect of three humic acids from different origin when they were applied with two effective Fe sources for plants: Fe- ethylenediaminedihydroxyphenylacetic acid (EDDHA) and Vivianite. To this end, an experiment with lupin (Lupinus albus L.) was performed involving two factors: (i) Fe source, and (ii) humic substances from three different origin (composted cork, leonardite, and compost obtained from a mixture of olive husk with cotton gin trash) applied at 0, 0.1, and 0.5 g organic carbon (C) kg?1 of growing media. At the rates used, humic substances promoted adverse effects on plant development, chlorophyll meter readings, and Fe content in lupin grown in calcareous media. Overall, the effect on dry matter and Fe content in plants was more relevant when Fe was supplied with Vivianite, the effect on chlorophyll meter readings being more significant when Fe was applied as Fe-EDDHA. Differences were also observed depending on the source of humic substances, those from leonardite promoting the greatest decrease in dry matter in roots and shoots. These humic substances possessed the highest values of spectroscopy index for aromaticity (A254 ). On the other hand, the application of humic substances from olive husk compost, which exhibited the lower aromaticity index, resulted in the smallest decrease in dry matter production and chlorophyll meter readings. Dry matter in roots decreased logarithmically with increased values of the estimates of the amounts of aromatic compounds accumulated in the growing media (R2 = 0.92; P < 0.01) with Vivianite as Fe source. Thus, the effects decreasing dry matter production, particularly in roots, and chlorophyll meter readings can be ascribed at least partially to the presence of phytotoxic aromatic compounds in humic substances.  相似文献   
38.
Dry bean is an important legume crop for Latin American people and nitrogen is one of the most yields limiting nutrients for bean crop. A greenhouse experiment was conducted to evaluate nitrogen (N) use efficiency of 20 dry bean genotypes. Genotypes were grown on an Oxisol and two N levels used were without N application (low level) and an application of 400 mg N kg?1 (high level). Shoot dry weight, grain yield and yield components, N concentration and uptake in shoot and grain were significantly affected by N and genotype treatments. Grain yield had a highly significant (P < 0.01) association with shoot dry weight, pod number, grains per pod and 100 grain weight. Among the 20 genotypes tested, Perola, CNFR 7847, CNFR 7865, CNFP 7777 and CNFM 6911 were found to produce reasonably good yield at low N rate as well as responded well to applied N. Whereas, some genotypes like BRS Radiante, CNFP 7624, CNFM 7875, CNFM 7886, CNFC 7813, CNFC 7827, CNFP 7677 and CNFP 7775 produced very good yields at higher N rate but very low yields at lower N rate. Hence, these genotypes are good for farmers using higher technology. Nitrogen concentration and uptake were higher in dry bean grains compared with shoot and 63% of N accumulated at zero N rate and 75% N accumulated at 400 mg N rate were translocated to grain across 20 genotypes. Nitrogen uptake efficiencies were having highly significant (P < 0.01) quadratic relationship with grain yield. This indicates that improving N uptake in dry bean plants can increase grain yield.  相似文献   
39.
Anxiety and fear are common underlying factors in many canine behavior problems that impair the human–pet bond and often result in abandonment, relinquishment, or euthanasia. A combination of behavioral and pharmacological interventions is used to ameliorate the behavioral signs associated with anxiety-related behaviors in dogs, but there continues to be need for effective interventions. The current study examined the effects of the nutraceutical ANXITANE® (l-Theanine) chewable tablets on fear of unfamiliar human beings. We first characterized dogs as anxious on the basis of the existence of a fear response to human beings in their home-pen. We then demonstrated that dogs characterized as anxious (N = 10) showed reduced interaction with an unknown human being as compared with normal controls (N = 7). The effect of an administration of ANXITANE® tablets (N = 5) on these anxious Beagle dogs was compared with placebo (N = 5). Objective behavioral measures of anxiety were obtained using an open-field test, a human interaction test, and an actiwatch protocol that allowed monitoring of activity over 24-hours. The ANXITANE® tablets-treated dogs showed greater human interaction and approach than the placebo control group, and no side effects related to treatment, including motor stimulant or sedative effects, were seen. The current study suggests that ANXITANE® tablets are effective for reducing fearful behavior toward unfamiliar human beings in dogs and supports their use for treating anxiety-related behaviors.  相似文献   
40.
The cotton bollworm Helicoverpa armigera is a destructive pest that affects a variety of crop plants. Because of its polyphagous feeding habit, mobility as adults, and high fecundity, the expanding infestations of H. armigera in different crops have caused economic losses and difficulties for pest population management. In Brazil, a sequence of different crop systems in the same area and crop rotation during the year can create a spatio-temporal mosaic of crops where H. armigera can persist. However, the consequences of the simultaneous and/or alternating presence of host plants for H. armigera populations through generations are unknown. In this study, we simulated, in the laboratory, hypothetical situations for the availability of soybean and cotton crops in the landscape. We evaluated the effects of: (1) the number of generations during which a population feeds on a host-plant species; (2) the succession of host-plant species on which populations have fed for two generations; and (3) the parental host plant on the fitness of H. armigera populations. Only the current host plant on which larvae fed affected the performance of the H. armigera populations. Decrease of mortality rates during the immature period was slowed when the larvae fed on soybean. The lowest value of reproductive potential (R 0) was found for individuals originating from mating between females and males reared in cotton. Our results indicated that pest-management and biological-control plans for H. armigera should be developed on a regional scale rather than for just a specific crop area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号