首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   780篇
  免费   54篇
  国内免费   1篇
林业   123篇
农学   12篇
基础科学   4篇
  194篇
综合类   84篇
农作物   23篇
水产渔业   41篇
畜牧兽医   266篇
园艺   31篇
植物保护   57篇
  2023年   16篇
  2022年   16篇
  2021年   20篇
  2020年   32篇
  2019年   30篇
  2018年   33篇
  2017年   27篇
  2016年   30篇
  2015年   20篇
  2014年   32篇
  2013年   34篇
  2012年   58篇
  2011年   65篇
  2010年   40篇
  2009年   43篇
  2008年   62篇
  2007年   36篇
  2006年   48篇
  2005年   35篇
  2004年   32篇
  2003年   27篇
  2002年   23篇
  2001年   11篇
  2000年   7篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
  1969年   1篇
  1968年   1篇
  1958年   1篇
  1941年   2篇
  1940年   1篇
  1939年   7篇
  1938年   3篇
  1937年   5篇
排序方式: 共有835条查询结果,搜索用时 468 毫秒
831.
Purple soils (Eutric Regosols) are widely distributed in humid subtropical Southwest China. They are characterized by high nitrification activities, with risks of severe NO3? leaching. Incorporation of crop residues is considered an effective method to reduce NO3? loss. In the present study, we compared the effects of alfalfa, rice straw, and sugarcane bagasse on gross N transformation turnover in a purple soil (purple soil, pH 7.62) compared with those in an acid soil (acid soil, pH 5.26), at 12 h, 3 months, and 6 months after residue incorporation. The gross N transformation rates were determined by 15N tracing. All tested crop residues stimulated the gross N mineralization rates, but reduced the net mineralization rates in both soils at 12 h after residue incorporation; however, the extent of the effect varied with the crop residue qualities, with rice straw having the strongest effects. Crop residues reduced net nitrification rates by depressing gross autotrophic nitrification rates and stimulating NO3? immobilization rates in the purple soil, particularly after rice straw incorporation (net nitrification rate decreased from 16.72 mg N kg?1 d?1 in the control to ??29.42 mg N kg?1 d?1 at 12 h of residue incorporation); however, crop residues did not affect the gross autotrophic nitrification rates in the acid soil. Crop residue effects subsided almost completely within 6 months, with sugarcane bagasse showing the longest lasting effects. The results indicated that crop residues affected the N transformation rates in a temporal manner, dependent on soil properties and residue qualities.  相似文献   
832.
We conducted a microcosm experiment with soil being sterilized, reinoculated with native microbial community and subsequently manipulated the bacterivorous nematodes, including three treatments: without (CK) or with introducing one species of the two bacterivores characterized with different body size but similar c-p (colonizer-persister) value (Rhabditis intermedia and Protorhabditis oxyuroides, accounted for 6 and 59% of bacterivores in initially undisturbed soil, respectively). We monitored the N2O and CO2 emissions, soil properties, and especially quantified gross N transformation rates using 15N tracing technique after the 50 days incubation. No significant differences were observed on soil NH4 + and NO3 ? concentrations between the CK and two bacterivores, but this was not the case for gross N transformation rates. In comparison to CK, R. intermedia did not affect soil N transformation rates, while P. oxyuroides significantly increased the rates of mineralization of organic N to NH4 +, oxidation of NH4 + to NO3 ?, immobilization of NO3 ? to organic N and dissimilatory NO3 ? reduction to NH4 +. Furthermore, the mean residence time of NH4 + and NO3 ? pool was greatly lowered by P. oxyuroides, suggesting it stimulated soil N turnover. Such stimulatory effect was unrelated to the changes in abundance of bacteria and ammonia-oxidizing bacteria (AOB). In contrast to CK, only P. oxyuroides significantly promoted soil N2O and CO2 emissions. Noticeably, bacterivores increased the mineralization of recalcitrant organic N but decreased soil δ13C-TOC and δ15N-TN values, in particular for P. oxyuroides. Combining trait-based approach and isotope-based analysis showed high potential in moving forward to a mechanistic understanding of bacterivore-mediated N cycling.  相似文献   
833.
In this study, the impact of rose chafer (Cetonia aurata L.) larvae on net and gross methane (CH4) fluxes in soil from an old permanent grassland site (Giessen, Germany) was investigated. Previous studies at this site suggested the existence of Scarabaeidae larvae-induced “CH4-emitting hot spots” within the soil profile which may subsequently lead to increased CH4 oxidation. The net (soil + larvae) and gross (soil and larvae separated) CH4 fluxes were studied in a 3-month laboratory incubation. Addition of larvae changed the soil from a net sink (?330 ± 11 ng CH4 kg?1 h?1) to a net source (637 ± 205 ng CH4 kg?1 h?1). Supply of plant litter to the soil + larvae incubation jars tended to increase CH4 emissions which was not significant due to large variability. After 11–13 weeks of incubation, the net soil CH4 oxidation was significantly stimulated by 13–21% in the treatments containing larvae when these were taken out. Analysis of archaeal 16S rRNA genes revealed that the majority of the obtained clones were closely related to uncultured methanogens from guts of insects and other animals. Other sequences were relative to cultivated species of Methanobrevibacter, Methanoculleus, and Methanosarcina. Hence, Scarabaeidae larvae in soils (i) may represent an underestimated source of CH4 emissions in aerobic upland soils, (ii) may stimulate gross CH4 consumption in their direct soil environment, and, thus, (iii) contribute to the spatial heterogeneity often observed in the field with closed-chamber measurements. Long-term CH4-flux balances may be wrongly assessed when “exceptional” net CH4 flux rates (due to larvae hot spots) are excluded from data sets.  相似文献   
834.
BackgroundCompression of epidural adipose tissue (EAT) within the scope of cauda equina syndrome (CES) could lead to an enhanced expression of inflammatory mediators, possibly contributing to pain amplification in dogs.ObjectivesTo analyze expression of inflammatory adipo(‐cyto)kines within the EAT of dogs with CES.AnimalsClient‐owned dogs: 15 dogs with CES and 9 dogs euthanized for unrelated medical reasons (controls).MethodsProspective, experimental study. Epidural adipose tissue and subcutaneous adipose tissue were collected during dorsal laminectomy and used for real‐time quantitative polymerase chain reaction. Tissue explants were cultured for measurements of inflammation‐induced release of cytokines.ResultsResults show a CES‐associated upregulation of the cytokines tumor necrosis factor alpha (TNFα: mean ± SD: 18.88 ± 11.87, 95% CI: 10.90‐26.86 vs 9.66 ± 5.22, 95% CI: 5.29‐14.02, *: P = .04) and interleukin‐ (IL‐) 10 (20.1 ± 9.15, 95% CI: 14.82‐25.39 vs 11.52 ± 6.82, 95% CI: 5.82‐17.22, *: P = .03), whereas the expression of the adipokine leptin was attenuated in EAT of dogs with CES (3.07 ± 2.29, 95% CI: 1.80‐3.34 vs 9.83 ± 8.42, 95% CI: 3.36‐16.30, **: P = .007). Inflammatory stimulation of EAT explant cultures resulted in an enhanced release of IL‐6 (LPS: 5491.55 ± 4438, 95% CI: 833.7‐10 149; HMGB1: 1001.78 ± 522.2, 95% CI: 518.8‐1485; PBS: 310.9 ± 98.57, 95% CI: 228.5‐393.3, ***: P < .001).Conclusion and Clinical ImportanceExpression profile of inflammatory adipo(‐cyto)kines by EAT is influenced from compressive forces acting in dogs with CES and might contribute to amplification of pain.  相似文献   
835.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号