首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
农学   2篇
  12篇
综合类   3篇
农作物   6篇
畜牧兽医   31篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2006年   1篇
  2002年   1篇
  1999年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
51.
Inhibition of ERK/MAPK pathway has been shown to decrease DNA methylation via down‐regulation of DNA methyltransferases (DNMTs) in several studies suggesting that this pathway plays an important role in regulation of DNA methylation. We examined the relative expression level of seven important genes related to ERK/MAPK pathway and DNMTs (DNMT1, DNMT3a and DNMT3b) by quantitative real‐time PCR in buffalo blastocysts produced by Hand‐made cloning and compared it with that in blastocyst‐stage embryos produced by in vitro fertilization (IVF). The expression level of six of seven genes related to ERK/MAPK pathway examined i.e., p21RAS, RAF1, AKT1, ERK2, PIK3R2 and c‐Myc was significantly higher (p < 0.05) in cloned than in IVF embryos. However, the expression level of FOS was lower (p < 0.005) in cloned than in IVF embryos. The relative expression level of DNMT3a and DNMT3b but not that of DNMT1 was significantly higher (p < 0.05) in cloned than in IVF embryos. These results indicate that the cloned embryos exhibit an abnormal expression of several important genes related to ERK/MAPK pathway and DNMTs. Although a direct link between ERK/MAPK pathway and DNMTs was not examined in the present study, it can be speculated that ERK/MAPK pathway may have a role in regulating the expression of DNMTs in embryos, as also observed in other tissues.  相似文献   
52.
Improvement in litter traits is the key to profitable pig farming that directly enhances the economic standing of the farmers in developing countries. The present study aimed to explore oestrogen receptor (ESR), epidermal growth factor (EGF), follicle-stimulating hormone beta subunit (FSHβ), prolactin receptor (PRLR) and retinol-binding protein 4 (RBP4) genes as possible candidate genetic markers for litter traits in indigenous pigs of India. The breeds included in the study were Ghungroo, Mali, Niang Megha and Tenyi Vo, and the reproductive traits considered were litter size at birth (LSB), number born alive (NBA), litter weight at birth (LWB), litter size at weaning (LSW) and litter weight at weaning (LWW) at their first parity. PCR-RFLP and primer-based mutation detection methods were used to identify polymorphism, and associations between the genotypes and the traits were analysed using a general linear model. The Ghungroo pigs recorded the best litter performances among the breeds (p < .05, LWB p < .01). Different alleles and genotypes of the genes under study were detected. Short interspersed nuclear element (SINE) −/− genotype of FSHβ revealed significantly higher litter traits (p < .05, LSB p < .01). The LWW was also found to be significantly influenced by ESR BB and AB, EGF AB and BB, and PRLR CC genotypes (p < .05). Although we did not find statistically significant and consistently superior litter traits with respect to different genotypes of other studied genes than genotype SINE −/− of the FSHβ, PRLR CC genotype demonstrated superior performances for all the litter traits. Our study revealed the FSHβ as a potential candidate genetic marker for litter traits in indigenous pig breeds of India.  相似文献   
53.
Genetic Resources and Crop Evolution - Assessment of genetic diversity and extent of trait variation among germplasm accessions facilitate the effective use of genetic resources for varietal...  相似文献   
54.
The primary cilium as the cell's antenna: signaling at a sensory organelle   总被引:1,自引:0,他引:1  
Almost every vertebrate cell has a specialized cell surface projection called a primary cilium. Although these structures were first described more than a century ago, the full scope of their functions remains poorly understood. Here, we review emerging evidence that in addition to their well-established roles in sight, smell, and mechanosensation, primary cilia are key participants in intercellular signaling. This new appreciation of primary cilia as cellular antennae that sense a wide variety of signals could help explain why ciliary defects underlie such a wide range of human disorders, including retinal degeneration, polycystic kidney disease, Bardet-Biedl syndrome, and neural tube defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号