首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
林业   3篇
  3篇
综合类   2篇
农作物   2篇
水产渔业   1篇
畜牧兽医   3篇
植物保护   2篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2013年   2篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1991年   1篇
  1977年   1篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
11.
Methyl orange (MO), methylene blue (MB), phenol (F), salicylic acid (SA), and rhodamine B (ROD) were used as substrates during the photodegradation experiments in the absence and in the presence of nanostructured Ag/titania-silica. The catalyst was characterized by scanning electron microscopy (SEM), scanning transmission electron microscope high-angle annular dark field (STEM-HAADF), stereological analysis, nitrogen adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) measurements. The results were fitted on pseudo-first and pseudo-second kinetic order models. The film diffusion was also determined. The photolysis degrades MO and F to a greater extent than the photocatalysis. The degradation of SA occurred at the same rate either by photolysis or by photocatalysis. MB was best removed by photocatalysis. With regard to the photocatalysis, the highest rates of film diffusion were obtained for MB, F, and ROD, meaning that these molecules crossed the film to arrive at the catalyst surface more rapidly than the others. For MO and MB, the results followed the pseudo-first-order kinetic model while for SA, F, and ROD, the pseudo-second-order kinetic model was more appropriate.  相似文献   
12.
A multicatenane is described in which two belts consisting of four annelated rings attached to the wide rims of two calix[4]arenes are interwoven in such a way that each ring of one belt penetrates two adjacent rings of the other belt and vice versa. The key step of the synthesis of this [8]catenane is the exclusive formation of preorganized heterodimers between a multimacrocyclic tetraurea calix[4]arene and an "open-chain" tetraurea calix[4]arene containing eight omega-alkenyl groups. When a tetraurea calix[4]arene containing four alkenyl groups is used, a bis-[3]catenane is formed analogously.  相似文献   
13.
Nowadays, the use of marine by-products as precursor materials has gained great interest in the extraction and production of chemical compounds with suitable properties and possible pharmaceutical applications. The present paper presents the development of a new immediate release tablet containing calcium lactate obtained from Black Sea mussel shells. Compared with other calcium salts, calcium lactate has good solubility and bioavailability. In the pharmaceutical preparations, calcium lactate was extensively utilized as a calcium source for preventing and treating calcium deficiencies. The physical and chemical characteristics of synthesized calcium lactate were evaluated using Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis and thermal analysis. Further, the various pharmacotechnical properties of the calcium lactate obtained from mussel shells were determined in comparison with an industrial used direct compressible Calcium lactate DC (PURACAL®). The obtained results suggest that mussel shell by-products are suitable for the development of chemical compounds with potential applications in the pharmaceutical domain.  相似文献   
14.
We report on new biomaterials with promising bone and cartilage regeneration potential, from sustainable, cheap resources of fish origin. Thin films were fabricated from fish bone-derived bi-phasic calcium phosphate targets via pulsed laser deposition with a KrF * excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns). Targets and deposited nanostructures were characterized by SEM and XRD, as well as by Energy Dispersive X-ray (EDX) and FTIR spectroscopy. Films were next assessed in vitro by dedicated cytocompatibility and antimicrobial assays. Films were Ca-deficient and contained a significant fraction of β-tricalcium phosphate apart from hydroxyapatite, which could contribute to an increased solubility and an improved biocompatibility for bone regeneration applications. The deposited structures were biocompatible as confirmed by the lack of cytotoxicity on human gingival fibroblast cells, making them promising for fast osseointegration implants. Pulsed laser deposition (PLD) coatings inhibited the microbial adhesion and/or the subsequent biofilm development. A persistent protection against bacterial colonization (Escherichia coli) was demonstrated for at least 72 h, probably due to the release of the native trace elements (i.e., Na, Mg, Si, and/or S) from fish bones. Progress is therefore expected in the realm of multifunctional thin film biomaterials, combining antimicrobial, anti-inflammatory, and regenerative properties for advanced implant coatings and nosocomial infections prevention applications.  相似文献   
15.
16.
In consideration of the hazards associated with the presence of the textile azo-dye and their biotransformation products in the environment, the goal of this work was to study bioremediation process by the yeast strain Pichia kudriavzevii CR-Y103 related to the ability to degrade and detoxify the sulfonated Reactive Orange 16 azo-dye. In experimental conditions, the optimal inoculum/dye concentration ratio required for complete decolorization (100%) of culture medium and biomass within 24 h has been 1 g L?1 yeast cell (dry weight)/50 mg L?1 Reactive Orange 16. In the presence of 400 mg L?1 of Reactive Orange 16 (RO16), 95% of the dye was removed after 72 h of incubation. Also, the yeast strain could decolorize other eight textile dyes (56.48–99.98% decolorization within 24 h). NADH-DCIP reductase and azo reductase activities were significantly increased (ca. 5.4 times and ca. 37 times, respectively) during the decolorization process. UV-VIS spectra, high-performance liquid chromatography (HPLC), and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of new biotransformation products in extracted metabolites, highlighting the partial biodegradation of the dye by the new yeast isolate. The phytotoxicity evaluation strongly supported the decreased toxicity of biodegraded products as minor inhibition on germination (%), root and shoots elongation of T. pratense L. and T. aestivum L. seedlings. Increasing of mitotic index value and decreasing the frequency of chromosomal aberrations in tested plant meristem cells treated with biodegraded products, compared with RO16 treatment (500 ppm), confirmed their slightly toxic nature. A cell viability assay also confirmed the reduced toxicity of biodegraded products on healthy monkey kidney cells (Vero cells).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号