首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   19篇
林业   9篇
农学   26篇
基础科学   14篇
  79篇
综合类   20篇
农作物   41篇
水产渔业   34篇
畜牧兽医   109篇
园艺   7篇
植物保护   18篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2020年   15篇
  2019年   24篇
  2018年   14篇
  2017年   18篇
  2016年   27篇
  2015年   5篇
  2014年   17篇
  2013年   30篇
  2012年   31篇
  2011年   25篇
  2010年   18篇
  2009年   9篇
  2008年   15篇
  2007年   17篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   13篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有357条查询结果,搜索用时 0 毫秒
71.
In Israel four European pear cultivars are grown: ‘Spadona’ is the main cultivar and ‘Coscia’, ‘Gentile’ and ‘Spadochina’ are its pollinators. However, molecular S-genotyping revealed that ‘Spadona’ is semi-compatible with its three pollinators. This explains, at least in part, the relatively low pear yield in Israel. The Syrian pear (Pyrus syriaca) grows wild in Israel and blooms intensively, overlapping the blooming of the cultivated European pears. Cross-fertilization between Syrian pear and ‘Spadona’ was shown to be efficient suggesting that Syrian pear might be a potent pollinator for ‘Spadona’. Twenty-six Syrian pear seedlings, from different sites in north-east Israel were S-genotyped identifying 11 that are fully compatible with the four European pear varieties cultivated in Israel. By this screening, 24 different S-RNases were cloned; ten of them are new, whereas the other fourteen had been identified previously. In addition, seedlings of two wild pear species were also S-genotyped. Two seedlings from Pyrus betulifolia and one from Pyrus korshinskii were found to be genetically compatible with the four European pear cultivars. From these seedlings four S-RNases were cloned, two are new, one had been cloned previously and one was identical to an S-RNase allele cloned from Syrian pear in this work.  相似文献   
72.
A 10-month-old Arabian foal was evaluated for a suspected immunoglobulin (Ig) M deficiency. Decreased to nondetectable concentrations of IgM, IgA, and IgG (T), and a normal concentration of IgG, were present. Results of in vitro testing of the blood lymphocyte blastogenesis showed a weak response to the B-cell mitogen, lipopolysaccharide (LPS), but normal responses to T-cell mitogens. Results of postmortem examination showed synovitis of the left tibiotarsal and both scapulohumeral joints. Atrophy and edema of the lymph nodes and lymphocyte depletion in the thymus and spleen were seen. A subacute inflammatory infiltrate was observed in the kidney, synovium, liver, and brain. Etiologic agents were not identified. This case represents a previously unreported form of immunodeficiency disease in the horse.  相似文献   
73.
Development plans are mainly responsible for population changes and the conversion of forest and rangelands into agricultural lands and human settlements. Qualitative and quantitative analysis of population and land use changes are necessary to assess the impacts of change on hydrological processes. However, such important issues have been less considered worldwide particularly in developing countries. Therefore, we selected the Shazand Watershed (1740 km2) because of rapid industrialization to track the effects of land use and population changes on streamflow and sediment yield. The data were collected from statistical yearbooks and satellite imageries from 1973 to 2008. All available measurements on discharge and suspended sediment concentration at the Pole doab hydrological station were also collected. The study was conducted for the whole period, as well as the pre‐1991 and post‐1991 as a basis for the economic development growth in the region. We found that the land use and population changes have occurred in the Shazand Watershed, especially in the vicinity of industrial zones. The results showed that the cities, industrial zones, roads, and bare lands quickly increased from 58 · 8 to 134 · 3 km2 during post‐1991. The flow durations, sediment rating curves and trend analyses indicated distinct variations in the relationship between streamflow and sediment and also caused changes within different periods. Based on the results, the mean annual flow and sediment yield in post industrialization (1991–2008) were respectively 0 · 84 and 1 · 19 times of those for pre‐industrialization period and the annual sediment yield increased from 25,000 to 29,850 Mg. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
74.
A pilot-scale system for the intensive land-based culture of abalone was established using an integrated design aimed at eliminating the dependence on external food sources, whilst reducing water requirements and nutrient discharge levels. The system was the first and simplest trial in a series of progressive complexity of the concept of integrated culture of seaweed, abalone, fish and clams in modular and intensive land-based facilities. Relative sizes of the modules, their stocking densities and the rate of nutrient supply were determined based on earlier results to be optimal. Effluents from two abalone (Haliotis tuberculata) culture tanks drained into macroalgae (Ulva lactuca or Gracilaria conferta) culture and biofilter tanks, where nitrogenous waste products contributed to the nutrition of the algae; net algal production from each algal tank was harvested and used to provide a mixed diet for the abalone. Excess algal yield was used elsewhere. The system was monitored to assess productivity and nitrogen partitioning over a year, while improvements were made based on the accumulating results. Total annual N-budgets were combined with mean production figures to determine a suitable ratio of abalone biomass to algal culture vessel productivity, towards commercial application of the concept. The abalone grew on average 0.26% and 0.25% body weight/d in the two culture tanks; reduced growth and increased food conversion ratios (food eaten/biomass gain; w/w) were associated with high summer water temperatures (max. 26.9°C). U. lactuca showed reliable growth and filtration performance (mean production of 230 g fresh weight/m2/d, removing on average 58% of nitrogen supplied). Conversely, G. conferta growth was highly erratic and was deemed unsuitable for the current application. It is estimated that 1 kg of abalone biomass would require food supplied by 0.3 m2 of U. lactuca culture, reducing N inputs required by 20% and N in effluent by 34% when compared to the two organisms grown in monoculture.  相似文献   
75.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development and grain-filling. The objective of this study was to identify quantitative trait loci (QTL) associated with heat susceptibility index (HSI) of yield components in response to a short-term heat shock during early grain-filling in wheat. The HSI was used as an indicator of yield stability and a proxy for heat tolerance. A recombinant inbred line (RIL) population derived from the heat tolerant cultivar ‘Halberd’ and heat sensitive cultivar ‘Cutter’ was evaluated for heat tolerance over 2 years in a controlled environment. The RILs and parental lines were grown in the greenhouse and at 10 days after pollination (DAP) half the plants for each RIL received a three-day heat stress treatment at 38°C/18°C day/night, while half were kept at control conditions of 20°C/18°C day/night. At maturity, the main spike was harvested and used to determine yield components. A significant treatment effect was observed for most yield components and a HSI was calculated for individual components and used for QTL mapping. QTL analysis identified 15 and 12 QTL associated with HSI in 2005 and 2006, respectively. Five QTL regions were detected in both years, including QTL on chromosomes 1A, 2A, 2B, and 3B. These same regions were commonly associated with QTL for flag leaf length, width, and visual wax content, but not with days to flowering. Pleiotropic trade-offs between the maintenance of kernel number versus increasing single kernel weight under heat stress were present at some QTL regions. The results of this study validate the use of the main spike for detection of QTL for heat tolerance and identify genomic regions associated with improved heat tolerance that can be targeted for future studies.  相似文献   
76.
A wheat (Triticum aestivum L.) recombinant inbred line (RIL) population was used to identify quantitative trait loci (QTL) associated with yield, yield components, and canopy temperature depression (CTD) under field conditions. The RIL population, consisting of 118 lines derived from a cross between the stress tolerant cultivar ‘Halberd’ and heat stress sensitive cultivar ‘Karl92’, was grown under optimal and late sown conditions to impose heat stress. Yield and yield components including biomass, spikes m?2, thousand kernel weight, kernel weight and kernel number per spike, as well as single kernel characteristics were determined. In addition, CTD was measured during both moderate (32–33 °C) and extreme heat stress (36–37 °C) during grain-filling. Yield traits showed moderate to high heritability across environments with a large percentage of the variance explained by genetic effects. Composite interval mapping detected 25 stable QTL for the 15 traits measured, with the amount of phenotypic variation explained by individual QTL ranging from 3.5 to 27.1 %. Two QTL for both yield and CTD were co-localized on chromosomes 3BL and 5DL and were independent of phenological QTL. At both loci, the allele from Halberd was associated with both higher yield and a cooler crop canopy. The QTL on 3BL was also pleiotropic for biomass, spikes m?2, and heat susceptibility index. This region as well as other QTL identified in this study may serve as potential targets for fine mapping and marker assisted selection for improving yield potential and stress adaptation of wheat.  相似文献   
77.
Vernalization and photoperiodism are two important physiological processes related to yield of many cool-season annual crops. The flowering response of 20 flax (Linum usitatissimum L.) genotypes to two vernalization regimes (vernalized and unvernalized) and two photoperiod treatments (10 and 14 h) was evaluated in a growth chamber study in 2010 and 2011. The results suggest that photoperiod, vernalization, and genotype all had an effect on earliness as measured by days to anthesis. Unlike flax grown in the Upper US Midwest and Canada, Texas flax is grown in the fall due to high spring and summer temperatures. Genotype interaction was observed with both vernalization and photoperiod. Specifically, flax genotypes from Texas (winter type) were sensitive to both vernalization and photoperiods for flowering. Texas genotypes delayed anthesis for 7 days or more in unvernalized seedlings, whereas flowering time of most other spring grown flax genotypes was unaffected by the vernalization treatments. Texas genotypes also delayed anthesis for 12 days or more under vernalized and short day conditions, whereas most other genotypes were not influenced by photoperiodism in vernalized seedlings. The selection for vernalization and photoperiodic sensitivity in Texas genotypes and introgression of these traits into recently adapted spring grown genotypes is needed for development of high yielding flax genotypes for southern Great Plains production areas.  相似文献   
78.
Traditionally, high amylose starch (HAS) from maize (Zea mays L.) has been mainly used as an ingredient in gum candies and as an adhesive for corrugated cardboard. Two recent advances have increased interest in the use of HAS. The first one has been the development of starch-based biodegradable thermo plastics. Second, high amylose maize is a source of resistant starch (RS), a type of starch that resists digestion. As a food additive, consumers can benefit from added RS since it will lower the glycemic index and the risk of colon cancer in accordance with recent research in food science. Normal maize has about 25% amylose starch. A maize inbred line, GEMS-0067 (Reg. no GP-550, PI 643420) possesses high amylose modifier gene(s) that, together with the recessive amylose extender (ae) gene, raises the starch amylose percentage to at least 70%. The objective of this study was to determine the gene effects, non-allelic interactions and heritability of high amylose content in maize using Bogyo’s triploid model. Nine populations were derived from a cross between H99ae, a maize inbred line with 55% amylose starch, and GEMS-0067. Data were collected from two locations in Missouri (MO) and South Dakota (SD) over 2 years (2005 and 2006). Incomplete dominance explained some of the inheritance of HAS. Maternal effects were also detected. The triploid models for MO and SD were separately established based on the corresponding data in 2005 and 2006. The additive and type 1 dominance effects in MO, and the additive, type 1 dominance, type 2 dominance, and additive × additive in SD were significantly different from zero meaning that those effects played an important role in amylose synthesis. Both broad-sense and narrow-sense heritabilities were high indicating that high amylose content could be effectively selected for in a segregating population.  相似文献   
79.
Much effort has been invested in identifying molecular markers in wheat (Triticum aestivum L.) linked to quantitative trait loci (QTL) that confer resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schwein) Petch]. Even after several generations of crossing and selection by many wheat breeding programs, resistance of the Chinese spring wheat cultivar ‘Sumai 3’ (PI 481542) remains among the most effective. It therefore seems that undocumented resistance QTL present in Sumai 3 were not detected in various mapping studies. Using an extremely susceptible Tibetan landrace (‘Y1193-6’; unknown pedigree) in the creation of a mapping population with Sumai 3, the objective of this research was to identify undocumented resistance QTL in Sumai 3. This was accomplished through collecting disease index (DI) and Fusarium damaged kernel (FDK) phenotypic values along with 305 Diversity Array Technology (DArT) and 52 Simple Sequence Repeat (SSR) marker genotypes on 160 F2:6 recombinant inbred lines (RILs). Disease response evaluations were based on four (two greenhouse and two field) experiments where spray inoculation methods were used. Three QTL were identified on chromosome arms 3BS, 6BL and 2DS explaining 26.1, 10.7 and 18.9% of the phenotypic variation for DI, respectively. The same QTL were also significantly associated with reduced FDK scores and explained 28.0, 11.0 and 23.0% of phenotypic variation. Lines within the mapping population were placed in eight categories with respect to their various QTL combinations. Lines with no QTL were the most susceptible, whereas those with the Sumai 3-derived 3BS and 6BL QTL combined with the 2DS QTL from Y1193-6 were the most resistant. Though the 3BS and 6BL QTL are well-documented, the 2DS resistance QTL, which was contributed by the susceptible parent, confers increased susceptibility when derived from Sumai 3. In this study no new FHB QTL from Sumai 3 was discovered, but results suggest that Sumai 3 contains a QTL for susceptibility on chromosome arm 2DS. Selection against this QTL may potentially increase resistance levels among Sumai 3-derived populations.  相似文献   
80.
The objectives of this study were to determine the effects of nitrogen (N) forms and deficient and toxic rates of boron (B) on the growth, NO3 accumulation, membrane permeability, mineral nutrition, and nitrogen use efficiency (NUE) of bunch onion (Allium cepa L. var. Radar) plants. Therefore, 20% of NO3 in reference nutrient solution was replaced by NH4, urea, or mixed amino acids (AA). To each of these solutions 3, 30, or 300 mmol m?3 B was added. Fresh and dry weights were the same in the reference and mixed AA treatments, but NH4 and urea decreased these growth parameters as compared to the reference. Mixed AA decreased the NO3-N content while urea increased it, and NH4 treatment yielded similar NO3-N content as compared to the reference. The nitrogen content of plants was increased by NO3 replacement with either NH4 and, urea or mixed AA. At the 300 mmol m?3 B rate, B content of plants was decreased by NH4 and urea, but increased by the mixed AA treatment. Membrane permeability was increased by NH4?replacement of NO3. Nitrogen use efficiency was found the highest in the reference treatment. Nitrogen and NO3-N contents were increased by the 300 mmol m?3 B rate. Increasing B in nutrient solution increased the B contents of plants. Mixed AA treatment decreased the phosphorus (P) content of plants. Potassium (K) and chloride (Cl) contents of plants were decreased in the NH4 treatment where B was applied at the 3 mmol m?3 rate. These results suggest that bunch onion growers may reduce NO3 content in onion tops by partially replacing NO3 with amino acids without reducing yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号