排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
42.
为筛选适宜间作的大豆品种,以早、中、晚熟三种类型共16个大豆品种(系)为试验材料,在玉米大豆间作和大豆净作(为对照)模式下比较研究其农艺性状和产量构成因素。结果表明,各熟期类型品种在间作条件下的株高、平均节间长、倒伏率均显著高于净作对照,且早熟品种的株高、底荚高、主茎节数、平均节间长以及倒伏率显著低于中、晚熟品种。早、中熟品种在间作下的有效分枝数与对照差异不显著,而晚熟品种显著高于对照。各熟期类型品种在间作模式下的产量都显著低于相应的对照,早熟类型品种的单株有效荚、单株粒数、百粒重、单株产量以及公顷单产均极显著低于中、晚熟类型品种,而这些性状在中、晚熟品种间差异不显著。早、中熟品种在间作下的单株有效荚率均显著高于对照,晚熟品种的单株有效荚率显著高于中熟品种,中熟品种显著高于早熟品种。然而各品种类型间作下的完整粒率与净作对照无显著差异,中、晚熟品种的完整粒率显著高于早熟品种。通过相关性分析,间作下倒伏率与株高、主茎节数、平均节间长呈极显著正相关;单株有效荚率、单株粒重、完整粒率、产量均与生育期呈极显著正相关;玉豆共生期占全生育期比重与有效荚率、完整粒率、产量呈极显著负相关。上述结果表明,在玉米大豆间作模式下,中、晚熟大豆品种相比早熟品种有较长的光补偿时期,能获得较高的产量,是适宜与玉米间作种植的大豆品种类型。 相似文献
43.
44.
【目的】基于全基因组重测序结果,开发与高蛋白、耐荫、抗倒伏等性状紧密相关的分子标记,同时利用开发的分子标记构建遗传连锁图谱,并对籽粒蛋白质含量进行QTL定位,为后续高蛋白、耐荫、抗倒育种研究提供参考和分子标记资源。【方法】以大面积栽培品种南豆12和地方品种十月黄为亲本,构建F2分离群体。对亲本材料进行覆盖度约为40×的全基因组重测序,用BWA、GATK及Breakdancer等软件比对,检测亲本材料在全基因组范围内的突变类型,挖掘相关变异基因。结合种子不同发育时期和荫蔽处理获得的转录组数据,结合qRT-PCR对发生突变的储藏蛋白、环境适应相关基因进行表达规律分析。同时,基于重测序数据,挖掘亲本间存在于基因编码区的SNP位点,对其进行酶切位点分析,将SNP标记转化为CAPS或dCAPS标记。此外,搜索亲本间存在的插入/缺失变异位点,在插入/缺失位点两侧高度保守的区域设计引物开发InDel标记。对开发的CAPS标记和InDel标记进行多态性筛选,选取具有多态性的CAPS分子标记和InDel标记,对F2材料进行基因分型。根据分型结果,利用JoinMap 4.0软件进行遗传连锁图谱的构建。依据构建的遗传图谱,结合近红外分析获得F2材料的籽粒蛋白质含量数据,使用Windows QTL Cartographer V2.5软件对大豆籽粒蛋白质含量进行QTL分析。【结果】测序结果显示,南豆12大量储藏蛋白、环境适应相关的重要基因或同源基因发生突变。转录组数据分析结果显示部分变异基因呈现不同的表达模式且差异显著,qRT-PCR分析进一步验证了该结果。此外,经检测开发的540个CAPS分子标记中有332个具有酶切多态性,300对InDel引物中有201对引物能扩增出多态性。基于533个多态性分子标记构建了一张包含20个连锁群的遗传连锁图谱,覆盖长度2 973.87 cM,标记间平均遗传距离5.58 cM。利用此图谱对大豆籽粒蛋白质含量进行QTL定位,共检测到QTL位点6个,可解释4.68%—18.25%的表型变异。【结论】基于亲本间的变异位点,共开发了533个多态性分子标记(包含8个基因特异性分子标记),检测到6个大豆籽粒蛋白质含量QTL位点,其中,主效QTL位点1个(qSPC-6)。 相似文献
45.
46.
47.
48.
49.
为了探明西南地区大豆机收的适宜时期,以熟期不同的3个大豆品种‘南夏豆35’‘、南夏豆38’和‘南夏豆45’为试验材料,通过田间机收和室内取样,分析不同收获时期的大豆籽粒形态特征、植株各部位含水量和机收效果。结果表明:完熟期大豆籽粒厚度显著下降,长/厚和宽/厚均显著增加‘,南夏豆35’籽粒宽度和厚度均显著高于‘南夏豆38’和‘南夏豆45’,长/宽和长/厚则表现相反;大豆各部位含水量完熟期极显著下降,品种间差异显著‘,南夏豆35’荚皮和籽粒含水率均显著低于‘南夏豆38’和‘南夏豆45’;‘南夏豆35’节间粗度和茎秆机械强度均显著低于‘南夏豆45’。完熟期割台损失率极显著增加,但籽粒破损率、清选损失率和总损失率均最小,机收效果好,其中‘南夏豆35’表现最好。 相似文献
50.