首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   9篇
农学   1篇
综合类   21篇
农作物   13篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
青稞是青藏高原的特色作物,也是藏区农牧民的主粮.西藏青稞育种主要是通过传统的人工杂交的方法,劳动量大,效率较低.提高青稞育种效率至关重要.本研究对青稞组织培养技术——成熟胚培养、花药培养和小孢子培养三种技术进行了试验,进行体系优化可缩短育种年限,因此利用组织培养技术提高青稞育种效率至关重要.  相似文献   
12.
利用1D-SDS-PAGE分离了261份青藏高原农家青稞的淀粉颗粒结合蛋白,旨在为青藏高原青稞淀粉品质改良和淀粉颗粒结合蛋白机制研究提供依据和基础信息。在分子量45~100 kD区域共有20种多态性蛋白条带和78种组合带型,其中2、3、5、10、11为新条带。利用PCR技术克隆了236份农家青稞GBSSI基因5′前导序列,出现1 000 bp和800 bp的多态性片段,且以前者为主,其频率为80.1%。在8份农家青稞及4份引进的低直链淀粉材料的GBSSI基因5′前导序列中共检测到32个多态性位点,包括9个InDel和23个SNP。GBSSI基因5′前导序列中出现了特有的序列差异,如未出现600 bp类型(约400 bp的特异缺失),而该缺失被认为是低直连淀粉大麦形成的原因;材料yf127、yf70、011Z1396和09Z586出现了特异点突变。因此认为,青藏高原农家青稞品种的淀粉颗粒结合蛋白具有丰富的多态性和独特性,可能存在新的形成机制。  相似文献   
13.
14.
青稞是禾本科大麦属的一种禾谷类作物,主要产自中国西藏、青海、四川、云南等地。为选育出适应我国西部高原地区种植的耐贫瘠并高产的青稞品种,本研究以370份青稞品种为材料,以Hoagland营养液为介质,对2叶期的青稞幼苗进行缺氮和对照2组处理试验,通过对不同处理下青稞幼苗的株高变化量和地上生物量(鲜质量、干质量)对缺氮的响应进行分析,并通过对丙二醛含量和氧化物酶活性测定对初选品种进行鉴定。结果表明:1)缺氮胁迫对不同青稞品种的生长影响存在显著性差异,筛选出耐贫瘠品种13份(北青3号、藏0814、ZYM0963、ZYM1099、藏0284、喜拉19号、藏0225、ZYM0762、藏0861、ZDM07610、藏1312、藏1265、WDM03955),不耐贫瘠品种14份(ZYM0303、WDM00496、WDM03703、ZDM04162、藏0234、ZYM0977、北青2号、拉萨紫青稞、甘农大7号、康青6号、ZDM08841、藏1405、ZDM08193、ZDM09826)。2)青稞通过改变POD、CAT、APX活性适应逆境以减少缺氮胁迫的伤害。对缺氮胁迫不敏感的品种,其应答主要依靠POD和APX活性增加,对缺氮胁迫敏感的品种,其应答主要依靠APX和CAT活性的增加,二者共同起主导作用使青稞适应缺氮逆境。  相似文献   
15.
ERA1(Enhanced response to ABA)基因编码法尼基转移酶(Farnesyl transferase)β亚基,该酶在干旱胁迫下对ABA信号负向调控因子的修饰起着关键作用。本研究以青稞(Hordeum vulgare subsp.vulgare)抗旱品种喜马拉雅10号为材料,利用RT-PCR技术克隆获得了ERA1基因全长cDNA序列,命名为HbERA1(登录号:KJ699392)。生物信息学分析表明,该基因全长1 401bp,可编码466个氨基酸序列,蛋白分子量为51.14kD,等电点为5.00。Prosite Scan分析结果表明,HbERA1含有多个干旱胁迫响应蛋白的作用位点,如酪蛋白激酶Ⅱ磷酸化位点、N-糖基化位点、蛋白激酶C磷酸化位点及N-豆蔻酰化位点。利用实时定量PCR方法研究了HbERA1在干旱胁迫条件下及复水后不同时间点的表达情况,发现在水分过剩处理下(土壤绝对含水量15.5%),HbERA1在土壤绝对含水量为33.4%时表达量最高,并随着土壤绝对含水量的下降而下调表达;进行干旱胁迫后(15.5%)基因表达量也明显下调表达;复水后表达逐渐恢复,复水8h时超过正常表达水平,表明HbERA1基因可能参与调控水涝和干旱胁迫双重信号传导。  相似文献   
16.
西藏小麦资源高分子量谷蛋白亚基研究进展   总被引:1,自引:0,他引:1  
高分子量麦谷蛋白亚基对小麦品质有显著影响,1,2,5+10,17+18,14+15等亚基组合通常与较好的面包烘烤品质相关联,这些亚基赋予面团很好的弹性和韧性.本文对高分子量麦谷蛋白亚基的结构与组成、对品质的影响、基因分子标记与克隆及其在育种中的应用、以及西藏小麦资源高分子量麦谷蛋白亚基的研究现状作了综述.旨在为西藏小麦品质改良提供理论根据.同时展望了应用新技术研究高分子量麦谷蛋白亚基在小麦品质改良中的作用.提出引入优质亚基是西藏小麦品质改良的一条重要途径.  相似文献   
17.
为阐明青稞在旱胁迫下基因发生可变剪切的规律,本研究以抗旱的"喜拉16号"和旱敏感的"迪庆黑元桂"为试验材料,分别对对照和21%PEG浓度下处理的样本进行多时间点的全转录组测序。结果表明,利用Leaf Cutter软件在所有的样品中共检测到了22 181个可变剪切事件;通过PCA分析发现,可变剪切具有明显的品种间特异性;另外,通过与抗旱基因数据库比对分析发现,在干旱胁迫处理下2个类型品种间有多个抗旱相关的基因发生了显著的差异可变剪切,分别是HVUL1H16429 (AtrbohF)、HVUL1H12808 (HAB1)、HVUL4H58649 (ABF4)、HVUL4H35985 (AtrbohD)、HVUL7H07799 (LOS5)、HVUL3H43774 (CLCc)、HVUL3H23631(ABCG40)、HVUL1H16840(MYB60)和HVUL6H08236(AREB1);对2个品种各自在对照与旱胁迫条件下的差异可变剪切基因进行pathway分析,发现了抗旱品种的差异可变剪切基因参与了更多的pathway,并且鉴别出Fatty acid degradation、Inositol phosphate metabolism、alpha-Linolenic acid metabolism和Fatty acid metabolism这4条通路显著富集。为解析青稞抗旱分子机理与培育青稞抗旱新品种奠定了理论基础。  相似文献   
18.
西藏半野生小麦高分子量麦谷蛋白亚基遗传多样性分析   总被引:1,自引:0,他引:1  
利用SDS-PAGE技术对142份西藏半野生小麦的HMW-GS的组成进行了遗传多样性分析。结果表明,在供试材料中,Glu-1位点共有12种等位基因,Glu-A1位点的1(2.82%)和null(97.18%)亚基,Glu-B1位点的8(0.7%)、7+8(80.28%)、6+8(16.20%)、7+9(2.11%)、23+24(0.7%)亚基和Glu-D1位点的2+12(91.55%)、2+10(2.11%)、4+12(2.11%)、2+12*(1.41%)、2(2.82%)亚基;其中亚基null、7+8、2+12在各自的位点上出现频率最高,分别达到了97.18%、80.28%、91.55%;亚基组合共有12种,主要为null/7+8/2+12,频率高达73.24%。根据获得的HMW-GS谱带构建[1,0]矩阵,计算材料间的Nei-Li′遗传相似系数(GS),发现所有材料间GS值变化范围在0.40~0.66之间,平均值为0.53。在142份供试材料中,共发现12条相对迁移率不同的谱带,频率变异的范围为0.7%~97.18%,Glu-A1、Glu-B1、Glu-D1三个位点的多样性指数分别为0.128、0.632、0.404,平均值为0.388。  相似文献   
19.
近几年随着的走俏,青稞种植面积也逐年的扩大,同时青稞品种在使用推广过程中混杂和退化的现象也越来越严重。混杂退化后的种子纯度明显下降,性状变劣,品质变差,抗逆性下降,产量明显降低,给种植户造成经济损失。如何防止青稞混杂具有重要的现实意义。  相似文献   
20.
为了分析青稞高氮处理相关基因的表达,以藏青13为实验材料,通过抑制差减杂交构建了青稞高氮处理下的差减c DNA文库。在随机挑取的281个阳性克隆中,测序获得219条高质量的EST,含有212条非重复且与Genbank中的基因或蛋白具有较高的同源性的序列。对其进行Blast2Go功能注释可将差异表达的基因定位到细胞组件、分子功能和代谢过程3大类内。通过KEGG代谢途径分析,212个比对结果中的117个ESTs有详细的KO功能注释,定位到17个具体的代谢途径上,且主要定位在光合作用碳固定途径和氮素代谢途径。此外,分析还发现这些基因主要是编码参与结构和功能代谢合成途径中的一些酶,且参与信号转导、转录调节和光合作用等生理过程,说明这些基因很可能参与到青稞在高氮处理下的抗性反应中。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号