首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   0篇
  国内免费   2篇
林业   99篇
农学   56篇
基础科学   9篇
  86篇
综合类   20篇
农作物   54篇
水产渔业   31篇
畜牧兽医   22篇
园艺   9篇
植物保护   39篇
  2018年   32篇
  2017年   36篇
  2016年   24篇
  2015年   7篇
  2014年   8篇
  2013年   3篇
  2012年   14篇
  2011年   22篇
  2010年   1篇
  2009年   4篇
  2006年   3篇
  2005年   112篇
  2004年   104篇
  2003年   47篇
  2002年   7篇
  2000年   1篇
排序方式: 共有425条查询结果,搜索用时 28 毫秒
81.
Time to flowering and maturity is an important adaptive feature in annual crops, including cowpeas (Vigna unguiculata (L.) Walp.). In West and Central Africa, photoperiod is the most important environmental variable affecting time to flowering in cowpea. The inheritance of time from sowing to flowering (f) in cowpeas was studied by crossing a photoperiod-sensitive genotype Kanannnado to a photoperiod-insensitive variety IT97D-941-1. Sufficient seed of F1, F2, F3 and backcross populations were generated. The parental, F1, F2, F3 and the backcross populations were screened for f under long natural days (mean daylength 13.4 h per day) in the field and the parents, F1, F2 and backcross populations under short day (10 h per day) conditions. The result of the screening showed that photoperiod in the field was long enough to delay flowering of photoperiod-sensitive genotypes. Photoperiod-sensitivity was found to be partially dominant to insensitivity. Frequency distribution of the trait in the various populations indicated quantitative inheritance. Additive (d) and additive × dominance (j) interactions were the most important gene actions conditioning time to flowering. A narrow sense heritability of 86% was estimated for this trait. This will result in 26 days gain in time to flowering with 5% selection intensity from the F2 to F3 generation. At least seven major gene pairs, with an average delay of 6 days each, were estimated to control time to flowering in this cross.  相似文献   
82.
83.
Physiconutritional qualities of fruits viz. apple, lime, pome- granate, Perlette grape, and Pusa Navrang grape were analyzed and compared with those of Indian gooseberry (Emblica officinalis Gaertn.). Indian gooseberry juice contained the highest vitamin C (478.56 mg/100 ml). Hence, when gooseberry juice was blended with other fruits juice for the preparation of ready-to-serve (RTS) beverages, it boosted their nutritional quality in terms of vitamin C content. On the basis of overall sensory quality and vitamin C content, RTS beverage prepared by blending gooseberry and Pusa Navrang grape juice in 20:80 ratio was found to be the best.  相似文献   
84.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   
85.
A novel method named as high pressure air-jet atomized electrospinning was proposed to prepare nanofibers with ultrahigh production. The spinning solution with lower concentration and viscosity was cutted into micron-sized droplets by a 700 mesh filter in the front of nozzle and then was crushed and atomized into massive smaller droplets, which were drawn into nanofibers directly under the electric force and airflow force. Flow field under different air pressure was simulated to study its effect on the formation of nanofibers. The airflow showed the minimum pressure and maximum velocity at a location 2 cm away from the spray nozzle, where small droplets cutted were crushed and atomized into massive smaller droplets by the converging airflow. The velocity and distribution region of the airflow increased with increasing air pressure. It showed a smaller diameter of 150 nm and ultrahigh production of 75.6 g/h for nanofibers prepared based on this novel method at the air pressure of 0.8 MPa. The production of nanofibers almost reached thousands of times of that from conventional needle electrospinning.  相似文献   
86.
87.
A series of superabsorbents based on acrylic acid (AA), sodium acrylate, 2-acrylamido-2-methylpropane sulphonic acid, N,N′-methylene bis-acrylamide (MBA) were prepared by inverse suspension polymerization. These hydrogels were further crosslinked on the surface with polyethylene glycol-600 (PEG-600). The water absorbency or swelling behaviors for these xerogels in water and 0.9% saline solutions, both under free condition and under load were investigated. Absorption characteristics of these hydrogels were found to depend on nature and concentration of crosslinker in the system. It was also found that the saline absorption was significantly improved as the incorporation of AMPS in the polymer was increased. The surface crosslinking introduced in the polymers was found to improve the absorption under load characteristics without lowering the free water absorption capacities of the polymer to a considerable extent.  相似文献   
88.
In this study, amino-functionalized magnetic γ-Fe2O3/sawdust composites (MSC-NH2) were investigated as biological absorption materials for removing Cu2+ ions from aqueous solution. These composites were fabricated by precipitated γ-Fe2O3 nanoparticles on sawdust substrate and then functionalized with 1,6-hexanediamine. Characterization of MSC-NH2 was performed by means of SEM, TEM, XRD, FTIR, BET, MPMS and XPS analysis to discuss the uptake mechanism. As a result, the amino groups are grafted upon the sawdust surfaces. The MSC-NH2 could be effectively used to remove Cu2+ from aqueous solution and be separated conveniently from the solution with the help of an external magnet. Batch experiments show that the adsorption equilibrium is achieved in 150 min, and the adsorption capacity is 7.55 mg/g at pH 6 and room temperature. The isotherm analysis indicates that the sorption data could be represented by Langmuir isotherm models. The kinetics is evaluated utilizing the Lagergren pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion models. Thermodynamic parameters reveal the spontaneous, endothermic and chemical nature of adsorption.  相似文献   
89.
以优良粳稻恢复系K1863为主体亲本,以国际水稻分子育种品种资源为供体亲本通过杂交并回交,获得了100多个K1863回交改造后代群体。对其中部分K1863回交改造后代进行了表型性状鉴定,初步表明被鉴定的多数K1863回交后代获得了主体亲本K1863对粳稻不育系的恢复能力,在回交后代中产生了稻瘟病抗性、耐盐性优于主体亲本K1863的材料,而且部分K1863回交改造后代的综合经济性状也优于主体亲本K1863。从而说明,利用国际水稻分子育种品种资源,通过大量回交,不仅可以在保留主体亲本的重要性状、保持与主体亲本性状相似性的同时,获得一些主体亲本本身不具有的有利性状,并选育出综合经济性状优于主体亲本的回交后代,因此通过本方法获得的回交后代材料具有重要的育种利用价值。本文还探讨了对这些K1863回交改造后代进行进一步利用改造的途径。  相似文献   
90.
    
Maize is moderately sensitive to salt stress; therefore, soil salinity is a serious threat to its production worldwide. Here, two maize variety Kharif Shaktiman-1 and Pioneer 30 v92 were screened to understand the maize response to salt stress and its tolerance mechanisms. Difference in relative water content, membrane stability index, stomatal conductance, shoot and root fresh/dry weight has been analyzed under salinity. The effect of osmotic stress was also analyzed on the basis of accumulation of osmoprotentant like proline, glycine betaine and soluble sugar content. The gas exchange characteristics and autophagy-dependent cell death were used to analyses the physiological effects of osmotic stress at about 15 days after salt stress in maize. The results of relative water content, membrane stability index, stomatal conductance, accumulation of osomoprotectant was higher in Kharif Shaktiman-1, the autophagy-dependent cell death was less in Pioneer 30 v92, indicate that Kharif Shaktiman-1 has more salt tolerant ability than the Pioneer 30 v92. But the result of autophagy-dependent cell death showed an opposite trend, as it was higher in Kharif Shaktiman-1, indicate more cell damage in it under salinity. So molecular technique or marker based on autophagy-dependent cell death for the screening of stress tolerant trait in desired crop may act as method of choice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号