首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   17篇
林业   34篇
农学   34篇
基础科学   5篇
  100篇
综合类   19篇
农作物   53篇
水产渔业   42篇
畜牧兽医   47篇
园艺   6篇
植物保护   29篇
  2023年   2篇
  2022年   9篇
  2021年   17篇
  2020年   17篇
  2019年   17篇
  2018年   18篇
  2017年   22篇
  2016年   26篇
  2015年   12篇
  2014年   22篇
  2013年   41篇
  2012年   23篇
  2011年   20篇
  2010年   13篇
  2009年   13篇
  2008年   25篇
  2007年   12篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1971年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有369条查询结果,搜索用时 10 毫秒
101.
A factorial experiment was developed with two factors of the growing medium (v/v): 100% coconut fiber (CF), 75% vermicompost+25% perlite (VP), 25% zeolite+75% perlite (ZP), 75% peat+25% perlite (PP), 75% coco chip+25% perlite (CCP), 75% coconut fiber+25% perlite (CFP) and 100% perlite (P); and sodium bicarbonate (NaHCO3) (0, 20 and 40 mM) involving the growth of gerbera cv. Dafne. Compared with CF substrate, NaHCO3 in the nutrient solution caused significant decrease in vegetative and reproductive traits and nutrient concentration [especially iron, phosphorus, and magnesium (Fe, P and Mg)] in the rest of the media. The improved crop performance of plants grown onto CF substrate was attributed to their strong capacity to accumulate Fe in the aerial part under alkaline conditions and to maintain a better plant nutritional status (higher P and Mg). It is concluded that the use of CF substrate could provide a useful tool to improve alkalinity tolerance of gerbera plants under NaHCO3 stress.  相似文献   
102.
Rhizosphere processes have a major impact on copper (Cu) availability and its fractions in soils. A greenhouse experiment with wheat was performed to investigate availability (using seven chemical procedures) and fractionation of Cu in the rhizosphere of ten agricultural soils (Typic Calcixerepts) amended with sewage sludge (1% w/w) using rhizoboxes. The results show that available Cu concentrations in rhizosphere soils were significantly (P < 1%) lower than in bulk soils. In comparison with the bulk soils, in the rhizosphere soils the concentration of Cu associated with organic matter and residual Cu increased by 24 and 4%, respectively, whereas exchangeable Cu, Cu associated with iron‐manganese oxides, and Cu associated with carbonate decreased by 20, 14, and 12%, respectively. Dissolved organic carbon (DOC) and Cu associated with iron‐manganese oxides and Cu associated with organic matter in the rhizosphere and bulk soils were significantly correlated (P < 5%). The results show that the differences between rhizosphere and bulk soils in chemical conditions such as DOC concentrations can change the proportion of soil Cu fractions and, therefore, Cu availability for wheat in calcareous soils amended with sewage sludge. The results show that the wheat root‐induced modifications of chemical and biological soil conditions do not only lead to Cu depletion in mobile soil Cu fractions, but also to modification in soil Cu fractions which are commonly considered as more stable.  相似文献   
103.
伊犁河谷土壤含盐量空间变异和格局分析   总被引:4,自引:0,他引:4  
基于区域变量理论,在GPS和GIS技术支持下,通过地统计学的半变异函数和Kriging空间插值,以察布查尔县为例,定量分析伊犁河谷不同层次土壤盐分的空间异质性.结果表明:0~20 cm、20~40 cm、60~80 cm层土壤盐分的半变异函数符合球状模型,40~60 cm层符合高斯模型.不同层次土壤盐分之间的空间自相关...  相似文献   
104.
根据研究区地质地貌,将整个研究区划分为三层阶地,通过对三层阶地的地下水盐动态进行实时监测,运用双因子方差分析方法,详细论述了地下水电导率随地下水位在不同时期及不同分布条件下的变化情况.结果表明,地下水电导率变化与水位变化有很大关系,且表现出很强的区域特征:各阶地电导率(EC)值均随水位的上升而增加,高EC值出现在高水位...  相似文献   
105.
In order to investigate the effects of different iron (Fe) sources (nano iron (Fe)-chelate, Fe- ethylenediamine-di(o-hydroxy phenyl acetic acid (EDDHA) and iron (II) sulfate (FeSO4)) on lettuce (Lactuca sativa) growth in alkaline solutions, an experiment was arranged in hydroponic system. This study showed that leaf Fe content and overall plant growth was significantly increased by Fe-chelate application, and the highest values of leaf Fe, plant pigments and vegetative growth were recorded in plants treated with nano Fe-chelate. The lowest Fe, chlorophyll, carotenoids and soluble sugars in leaves were observed in FeSO4 treatment. There were no difference in soluble sugars contents of plants between nano Fe-chelate and Fe-EDDHA treatments. Fertilization of lettuce plants with different Fe-chelate sources had a beneficial effect on the manganese (Mn) and zinc (Zn) uptake in plants. It is concluded that application of chelated form of Fe (especially nano Fe-chelate) must be performed in hydroponic system with alkaline water, to overcome Fe deficiencies and to make better nutritional status.  相似文献   
106.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   
107.
Root distribution of field grown potatoes (cv. Folva) was studied in 4.32 m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm root per cm3 soil) compared with root development in fully irrigated (FI) potatoes. Highest RLD existed in the top 30-40 cm of the ridge below which it decreased sharply. The RLD was distributed homogenously along the ridge and furrow but heterogeneously across the ridge and furrow with highest root density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30-70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below the furrows compared with the corresponding layers below the ridges. The RLD values in the soil profile of the ridges and the furrows followed the Gerwitz and Page model: RLD = α × exp(−β × z). The highest value of surface root density (α) and rate of change in density (β) was found in coarse sand while the lowest values of α and β were found in the sandy loam and loamy sand. The model estimated the effective rooting depth in coarse sand and sandy loam quite well but did slightly overestimate it in the loamy sand. Statistical analysis showed that one α and β value can be used for each soil irrespective of the irrigation treatment. Thus, the effective rooting depths corresponding to root length densities of 0.1 and 0.25 cm cm−3 for sandy loam, loamy sand, and coarse sand soils were 99, 141, and 94 cm, and 80, 115, and 78 cm, respectively, calculated from top of the ridge. The findings of this study can be used in practice for efficient use of water and nutrients in the field.  相似文献   
108.
To study the effects of different levels of drought stress on root yield and some morpho-physiological traits of sugar beet genotypes, a study was conducted in the research farm of Islamic Azad University of Birjand, Iran in 2013 as strip-split plot experiments based on randomized complete block design. Different levels of drought stress were considered as vertical factor in three levels including normal irrigation, moderate stress, and severe stress. Horizontal factor was assigned to five varieties of sugar beet. Drought stress had a significant effect on root dry weight, total dry weight, root yield, and leaf temperature at 1% probability level and on leaf dry weight, crown dry weight, and harvest index at 5% probability level. Drought stress had an adverse effect on root yield of investigated genotypes of sugar beet. Under normal conditions, the mean of root yield was higher than middle and severe drought stress. Different investigated genotypes of sugar beet responded to drought stress based on their yield potential. The highest positive correlation of root yield was observed with root dry weight (r=0.977**). Stepwise regression analysis and path coefficient analysis showed that root dry weight and petiole dry weight are the most important traits that can affect root yield of sugar beet under drought stress and can used as selection criteria in investigated cultivars of sugar beet. Finally, 7221 genotypes can be considered as tolerant genotypes in the next studies. In comparison, Jolgeh cultivar (as susceptible control) yielded well in areas with normal irrigation, but under moderate and severely stresses its root yield was reduced.  相似文献   
109.
Eurasian Soil Science - Arid and semiarid soils of southern Iran may fix a large content of applied potassium (K), but the fixed K may be gradually supplied to plants. Sixteen representative soils...  相似文献   
110.
A feeding trial was conducted to evaluate the effect of replacing fish meal protein with fermented soybean meal (FSM) on the growth performance, feed utilization, amino acid profile, body composition, morphological parameters, activity of antioxidant and digestive enzymes of black sea bream (Acanthopagrus schlegeli) juvenile. Five isonitrogenic and isolipidic diets were prepared with levels of 0 (control), 80, 160, 240 and 320 g kg?1 FSM. Triplicate groups (40 fish per tank) of juvenile black sea bream with initial weight of 1.17 ± 0.04 g were hand‐fed to visual satiation at three meals per day for 8 weeks. The fish fed diets containing different levels of FSM had no significant differences regarding survival and specific growth rate compared with control group. Feed and protein efficiency ratios of fish fed diet containing 320 g kg?1 FSM were significantly lower than those of control group. Daily feed intake and daily protein intake of fish fed diet containing 240–320 g kg?1 were significantly higher than those of control group. Hepatosomatic index and condition factor of fish were not affected by different dietary FSM level. Fish fed diets containing 240–320 g kg?1 FSM had significantly higher visceral somatic index than control group. Whole body proximate and amino acid compositions of fish were not affected by dietary FSM level. The activity of digestive enzymes in the intestine was not affected by dietary FSM level. The activity of glutathione peroxidase in liver was significantly higher for fish fed the diet containing 160 g kg?1 FSM compared with control group. This study showed that up to 40% fish meal in the diets of juvenile black sea bream could be replaced by fermented soybean meal with supplementation of methionine, lysine and taurine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号