首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1135篇
  免费   41篇
  国内免费   3篇
林业   112篇
农学   19篇
基础科学   12篇
  259篇
综合类   130篇
农作物   110篇
水产渔业   34篇
畜牧兽医   371篇
园艺   28篇
植物保护   104篇
  2022年   13篇
  2021年   11篇
  2020年   17篇
  2019年   20篇
  2018年   26篇
  2017年   19篇
  2016年   31篇
  2015年   17篇
  2014年   28篇
  2013年   56篇
  2012年   48篇
  2011年   56篇
  2010年   30篇
  2009年   39篇
  2008年   45篇
  2007年   49篇
  2006年   59篇
  2005年   70篇
  2004年   43篇
  2003年   53篇
  2002年   47篇
  2001年   12篇
  2000年   11篇
  1999年   13篇
  1998年   9篇
  1997年   17篇
  1996年   17篇
  1995年   13篇
  1994年   7篇
  1993年   7篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   18篇
  1988年   7篇
  1987年   10篇
  1986年   10篇
  1985年   11篇
  1984年   9篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1976年   7篇
  1975年   7篇
  1974年   11篇
  1972年   7篇
  1971年   8篇
  1926年   11篇
  1925年   10篇
  1924年   7篇
排序方式: 共有1179条查询结果,搜索用时 15 毫秒
91.
The trend towards specialization in conventional farming led to large agricultural areas in Germany and in Europe lacking livestock. Also stockless organic farming has increased during recent years. In organic farming clover/grass-ley (CG) provides nitrogen (N) to the whole cropping system via symbiotic N2 fixation and also controls certain weeds. A common practice in organic farming, when ruminants are not present, is to leave the biomass from CG in the field for their residual fertility effect. CG biomass, crop residues (CR) and cover crops (CC) represent a large unexploited energy potential. It could be used by anaerobic digestion to produce biogas. A field experiment was carried out by implementing a whole cropping system with a typical crop rotation for such farming systems on the research station Gladbacherhof from 2002 to 2005. The crop rotation consisted of six crops (two legumes and four non-legume crops). The aim was to evaluate whether the use of N could be improved by processing biomass from CG, CR and CC in a biogas digester and using the effluents as a fertilizer, compared to common practice. In the control treatment, represented by the usual stockless system, the CG, CR and CC biomass were left on the ground for green manure purposes. In the biogas systems these substrates were harvested for digestion in a biogas plant. The effluents of digestion were used to manure the non-legumes in the same crop rotation. Results indicate that digestion of CG, CR and CC can increase the crop dry matter and N yields and the N content of wheat grains in organic stockless systems. Harvesting and digestion of residues and their reallocation after digestion resulted in a better and more even allocation of N within the whole crop rotation, in a higher N input via N2 fixation and lower N losses due to emissions and probably in a higher N availability of digested manures in comparison to the same amounts of undigested biomass.  相似文献   
92.
对从鳞茎生长的虎眼万年青'ChesapeakeSnowflake'植株,施加10,50μL2%的Fascina-tionTm,植株提早开花12d;而施加100,200μL2%的FascinationTM,植株提早开花9~10d;施加200mg/L的Pro-Gibb?,植株提早开花12d,而施加25,50和100mg/L的Pro-Gibb?,植株提早开花6~7d.从小鳞茎生长的虎眼万年青'ChesapeakeSnowflake'植株,施加10,50μL2%的FascinationTM,植株提早开花14d,而施加100,200μL2%的FascinationTM,植株提早开花10~11d;施加200mg/L的Pro-Gibb?,植株提早开花14d,而施加25,50mg/L的Pro-Gibb?,植株提早开花8~9d.两种植物生长调节剂对花茎的长度没有明显的影响。  相似文献   
93.
Quantifying the most important mechanisms of acid buffering in carbonate-free soils From the release of cations from the soil matrix during pH-stat-titrations, characteristic values for assessing buffer rates were derived separately for single elements. Recorded buffer reactions became almost exclusively apparent in the release of Al and Fe, however the contribution of Fe to the total turnover only amounted to 1–3%. The release of each element and of DOC in the course of time was due to the overlapping of two first-order reactions, respectively. In the fast initial reaction all measured elements were released at nearly the same velocity, whereas in the 2nd, slower reaction the rate of Al-release corresponded to that of DOC but was at least seven times higher than that of Fe. Correlations between the maxima of release and soil chemical properties revealed a dominating contribution of organically bound Al (Alp) to proton buffering. It is assumed that also the amount of Fe released is originating in organic complexes.  相似文献   
94.
In an attempt to evaluate whether breeding and selection for high yielding capacity changed the P requirement of modem wheat cultivars. the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar (‘Peragis’) and a modern spring-wheat cultivar (‘Cosir’) were cultivated in a C-loess low in available P and high in CaCO3 in 120 cm high PVC tubes. In addition and for comparison, nutrient solution experiments were also conducted. Shoot growth, root growth. P uptake. P translocation and P distribution within the shoot at different developmental stages were compared. The grain yield of the modern cultivar ‘Cosir’ was higher at limiting and non-limiting P supply and. therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. Grain yield reduction at low P supply was mainly due to an inhibition of tillering and thus lower number of ears per plant, whereas the number of grains per ear was hardly affected. Reduced tillering at low P supply could not be related to P concentrations in the shoot meristematic tissues which were generally much higher than in other plant tissues and kept at an elevated level even at limiting P supply. Root branching (1st order laterals) was reduced at limiting P supply in ‘Cosir’ but not in ‘Peragis’ which, generally, had lower numbers of laterals at the beginning of tillering. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar ‘Cosir’ are (i) efficient use of assimilates for root-growth characteristics which enhance P acquisition: enhanced root branching and thus smaller mean root diameter and longer root hairs, (ii) an efficient P uptake system, (iii) efficient remobilization of P from vegetative plant organs to the grains, and most importantly (iv) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear.  相似文献   
95.
The almond major storage protein, amandin, was prepared by column chromatography (amandin-1), cryoprecipitation (amandin-2), and isoelectric precipitation (amandin-3) methods. Amandin is a legumin type protein characterized by a sedimentation value of 14S. Amandin is composed of two major types of polypeptides with estimated molecular weights of 42-46 and 20-22 kDa linked via disulfide bonds. Several additional minor polypeptides were also present in amandin. Amandin is a storage protein with an estimated molecular weight of 427,300 +/- 47,600 Da (n = 7) and a Stokes radius of 65.88 +/- 3.21 A (n = 7). Amandin is not a glycoprotein. Amandin-1, amandin-2, and amandin-3 are antigenically related and have similar biochemical properties. Amandin-3 is more negatively charged than either amandin-1 or amandin-2. Methionine is the first essential limiting amino acid in amandin followed by lysine and threonine.  相似文献   
96.
Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two oilseed‐rape cultivars differing in N‐uptake efficiency. N‐efficient cultivar (cv.) ‘Apex' and N‐inefficient cv. ‘Capitol' were grown in a field experiment on a silty clayey gleyic fluvisol near Göttingen, northern Germany, and fertilized with 0 (N0) and 227 (N227) kg N ha–1. In February 2002, PVC tubes with a diameter of 50 mm were installed between plant rows at 0–0.3 and 0–0.6 m soil depth with an angle of 45°. At the beginning of shooting, beginning of flowering, and at seed filling, the PVC tubes were substituted by PVC tubes (compartments) of the same diameter, but with an open window at the upper side either at a soil depth of 0–0.3 or 0.3–0.6 m allowing roots to grow into the tubes. Anion‐exchange resin at the bottom of the compartment allowed estimation of nitrate leaching. The compartments were then filled with root‐free soil which was amended with or without 90 mg N (kg soil)–1. The newly developed roots and nitrate‐N depletion were estimated in the compartments after the installing period (21 d at shooting stage and 16 d both at flowering and grain‐filling stages). Nitrate‐N depletion was estimated from the difference between NO ‐N contents of compartments containing roots and control compartments (windows closed with a membrane) containing no roots. The amount of nitrate leached from the compartments was quantified from the resin and has been taken into consideration in the calculation of the N depletion. The amount of N depleted from the compartments significantly correlated with root‐length density. Suboptimal N application to the crop reduced total biomass and seed‐yield formation substantially (24% and 38% for ‘Apex’ and ‘Capitol’, respectively). At the shooting stage, there were no differences in root production and N depletion from the compartments by the two cultivars between N0 and N227. But at flowering and seed‐filling stages, higher root production and accordingly higher N depletion was observed at N0 compared to N227. Towards later growth stages, the newly developed roots were characterized by a reduction of root diameter and a shift towards the deeper soil layer (0.3–0.6m). At low but not at high N supply, the N‐efficient cv. ‘Apex’ exhibited higher root growth and accordingly depleted nitrate‐N more effectively than the N‐inefficient cv. ‘Capitol’, especially during the reproductive growth phase. The calculated nitrate‐N‐uptake rate per unit root length was maximal at flowering (for the low N supply) but showed no difference between the two cultivars. This indicated that the higher N‐uptake efficiency of cv. ‘Apex’ was due to higher root growth rather than higher uptake per unit of root length.  相似文献   
97.
Nitrogen (N) is a major factor limiting grain production in the high rainfall zone (HRZ, 450–700 mm annual average rainfall of southwestern Australia (SWA). Transient waterlogging and leaching of applied N fertilizer are hazards faced in most years by crop producers. The major crops are wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), canola (Brassica napus L.) and lupin (Lupinus angustifiolius L.) grown in rotation. Two series of experiments involving, levels and timing of N fertilizer application and levels of plant population were done. The first series, in 2003–2004, consisted of 3 experiments in 3 growing seasons (early May to late-October) to measure the grain yield (GY) increase (response) of wheat and barley to various methods of N fertilizer application (methods of split N application were compared to N applied at sowing). The aim of the experiments was to determine the optimal N fertilizer application strategy for maximum GY and quality in situations where transient waterlogging was a frequent occurrence. The second series of four experiments, from 2007–2009, measured the GY of wheat sown at three levels of plant population to 4 levels of N applied after transient waterlogging (taken to be rainfall events in which >25 mm of rain was recorded in 24 to 48 hours).

Applying the N fertilizer after high rainfall and transient waterlogging (tactical N application) increased GY and protein percentage of grain compared to applying all of the N fertilizer at sowing. Where transient waterlogging was not frequent, applying the N after waterlogging was not always better than applying part of the N according to growth stage of the crop or according to fixed times after sowing. When the crop was water-logged three or more times, N uptake by the crop at anthesis and apparent fertilizer N recovery in the crop was substantially increased by applying the N after waterlogging compared to applying the entire N at sowing. This study found that a tactical N management strategy for the HRZ of SWA is to apply some N at sowing with subsequent applications made after heavy rainfall that leads to transient waterlogging. Split N fertilizer applied either according to time after sowing or to growth stage of the crop was equally effective for increasing GY in situations where waterlogging was less frequent.

The observation from these experiments, that grain yield increases due to splitting the N dose were associated with increases in ear numbers, lead to a further set of experiments where plant population was increased in conjunction with N applied after waterlogging events. The combined strategy of increased plant population with strategic N application decreased the amount of N required for maximum GY where more than 3 heavy rainfall events occurred in a growing season.

One practical outcome of this research is to indicate that farmers can withhold applications of N fertilizer after sowing in seasons when transient waterlogging does not occur.  相似文献   

98.
99.
The wheat (Triticum aestivum L.) plant type in major producing areas of the U.S. is changing rapidly from tall cultivars to high‐yielding semidwarf cultivars. Objectives of experiments were to determine if nitrogen and phosphorus nutritional requirements differ between traditional tall cultivars and modern semidwarf cultivars under dryland and irrigated conditions. ‘Larned’, a tall cultivar; ‘Newton’, a semidwarf cultivar; and ‘Plainsman V, a high‐protein semidwarf cultivar, were grown with all combinations of three nitrogen fertilizer levels (0, 84, and 168 kg N/ha) and two phosphorus fertilizer levels (0 and 90 kg P2O5/ha) at Colby, Kansas for two years. Three levels of irrigation—dryland, limited irrigation, and full irrigation—were applied. Grain yields were highest with 84 kg N/ha under dryland and with 168 kg N/ha under irrigation. Phosphorus increased grain yield under dryland conditions one year, but had no effect under irrigated conditions. Cultivar X nutrition interactions from differential yield responses to fertility levels occurred under the dryland and limited irrigation regimes one year. Grain protein content was increased by nitrogen fertilization under all regimes both years and was decreased only by phosphorus fertilization under dryland conditions one year. Cultivar X nitrogen interactions for grain protein occurred under all irrigation regimes. We concluded that nutrient requirements do not differ between tall and semi dwarf wheat culti‐vars under any irrigation regime. Raising the recommended level of nutrients, particularly nitrogen, should be considered for all cultivars, both tall and semidwarf.  相似文献   
100.

Purpose

Grasslands play a crucial role in offsetting greenhouse gas emissions and mitigating climate change. A moderate change in grassland carbon (C) and nitrogen (N) stocks may substantially alter the global C and N cycle and thereby influence climate. But how grassland C and N stocks respond to grazing and slope position remains uncertain. This research investigates how C and N stocks respond to cattle grazing along a landscape slope.

Materials and methods

We studied a grassland that has been grazed by cattle at four cattle stocking rates (0, 1.2, 2.4, and 4.8 animal unit months (AUM) ha?1) since 1949, representing control (CK), light (L), heavy (H), and very heavy (VH) grazing intensities, respectively. Samples were taken from the top and bottom slope positions within each paddock (only the top position in CK); C and N stocks in soil, roots, litter, and standing crop were estimated. Soil C and N stocks were estimated based on equivalent mass (1500 Mg ha?1). Root C and N stocks were estimated to the depth of 15 cm.

Results and discussion

All parameters, except for litter N stock and standing crop C stock, significantly responded to the interaction of grazing intensity and slope position. In the bottom position, soil and standing crop C and N stocks as well as litter C stock were higher with the L treatment than with VH, while no significant differences were found among the three grazed treatments for root C and litter N stocks. In the top position, soil and root C and N stocks were higher with the VH treatment than with L, whereas litter C and N stocks and standing crop C stock were lower with VH than with L.

Conclusions

Our results provide evidence that slope position plays an important role in regulating the response of C and N stocks to grazing and may need to be considered when developing optimal grazing management strategies.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号