首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1132篇
  免费   42篇
  国内免费   3篇
林业   112篇
农学   19篇
基础科学   12篇
  258篇
综合类   129篇
农作物   110篇
水产渔业   34篇
畜牧兽医   371篇
园艺   28篇
植物保护   104篇
  2022年   13篇
  2021年   11篇
  2020年   17篇
  2019年   20篇
  2018年   26篇
  2017年   19篇
  2016年   31篇
  2015年   17篇
  2014年   28篇
  2013年   56篇
  2012年   48篇
  2011年   56篇
  2010年   30篇
  2009年   39篇
  2008年   45篇
  2007年   49篇
  2006年   59篇
  2005年   69篇
  2004年   43篇
  2003年   53篇
  2002年   47篇
  2001年   12篇
  2000年   11篇
  1999年   13篇
  1998年   9篇
  1997年   17篇
  1996年   17篇
  1995年   13篇
  1994年   7篇
  1993年   7篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   18篇
  1988年   7篇
  1987年   10篇
  1986年   10篇
  1985年   11篇
  1984年   9篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1976年   7篇
  1975年   7篇
  1974年   11篇
  1972年   7篇
  1971年   8篇
  1926年   11篇
  1925年   10篇
  1924年   7篇
排序方式: 共有1177条查询结果,搜索用时 15 毫秒
21.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   
22.
Milled oat groat pearlings, trichomes, flour, and bran were extracted with methanol and the fractions tested in vitro for antioxidant capacity against low-density lipoprotein (LDL) oxidation and R-phycoerythrin protein oxidation in the oxygen radical absorbance capacity (ORAC) assay. The oxidative reactions were generated by 2,2'-azobis(2-amidinopropane) HCl (AAPH) or Cu(2+) in the LDL assay and by AAPH or Cu(2+) + H(2)O(2) in the ORAC assay and calibrated against a Trolox standard to calculate Trolox equivalents (1 Trolox equivalent = 1 TE = activity of 1 micromol of Trolox). The antioxidant capacity of the oat fractions was generally consistent with a potency rank of pearlings (2.89-8.58 TE/g) > flour (1.00-3.54 TE/g) > trichome (1.74 TE/g) = bran (1.02-1.62 TE/g) in both LDL and ORAC assays regardless of the free radical generator employed. A portion of the oat antioxidant constituents may be heat labile as the greatest activity was found among non-steam-treated pearlings. The contribution of oat tocols from the fractions accounted for <5% of the measured antioxidant capacity. AAPH-initiated oxidation of LDL was inhibited by the oat fractions in a dose-dependent manner, although complete suppression was not achieved with the highest doses tested. In contrast, Cu(2+)-initiated oxidation of LDL stimulated peroxide formation with low oat concentrations but completely inhibited oxidation with higher doses. Thus, oats possess antioxidant capacity most of which is likely derived from polar phenolic compounds in the aleurone.  相似文献   
23.
In the 1970s unexpected forest damages, called “new type of forest damage” or “forest decline”, were observed in Germany and other European countries. The Federal Republic of Germany and the German Federal States implemented a forest monitoring system in the early 1980s, in order to monitor and assess the forest condition. Due to the growing public awareness of possible adverse effects of air pollution on forests, in 1985 the ICP Forests was launched under the convention on long-range transboundary air pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE). The German experience in forest monitoring was a base for the implementation of the European monitoring system. In 2001 the interdisciplinary case study “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests”, funded by the German Federal Ministry of Education and Research, concentrated on in-depths evaluations of the German data of forest monitoring. The objectives of the study were: (a) a reliable assessment of the vitality and functioning of forest ecosystems, (b) the identification and quantification of factors influencing forest vitality, and (c) the clarification of cause-effect-relationships leading to leaf/needle loss. For these purposes additional data from external sources were acquired: climate and deposition, for selected level I plots tree growth data, as well as data on groundwater quality. The results show that in particular time series analysis (crown condition, tree growth, and tree ring analysis), in combination with climate and deposition are valuable and informative, as well as integrated evaluation of soil, tree nutrition and crown condition data. Methods to combine information from the extensive and the intensive monitoring, and to transfer process information to the large scale should be elaborated in future.
Sabine AugustinEmail:
  相似文献   
24.
25.
Weeds resistant to the s-triazine herbicide atrazine also show resistance to the triazinone herbicide metribuzin. However, with highly lipophilic triazinones, thylakoids isolated from atrazine-resistant Amaranthus retroflexus (mutation at position Ser264 of the photosystem II D-1 reaction centre protein) in general show a higher pI50 value in photosystem II electron transport than those from the wild type (i.e. negative cross-resistance; ‘supersensitivity’). A quantitative structure–activity relationship (QSAR) can be established, wherein the lipophilicity of the compound plays a major role. In in-vivo experiments, it was found that the triazinone DRW2698 killed resistant Amaranthus retroflexus and Chenopodium album whereas the wild type was almost unaffected. Triazinones were further investigated in five different mutants of Chlamydomonas rheinhardtii (mutations in the D-1 protein at positions Ser264, Ala251, Leu275, Phe255, and Val219). Inhibitory activity of all triazinones was generally enhanced in the Phe255 mutant but decreased in the Val219 mutant. In the other mutants, biological activity was decreased when position 3 of the triazinone was substituted by CH3, OCH3, SCH3, NHCH3 or N(CH3)2. However, negative cross-resistance was again observed when this position was occupied by free thiol. It is therefore suggested that these two groups of triazinones orient themselves differently within the herbicide binding niche of the photosystem II D-1 protein.  相似文献   
26.
The two insecticidal benzoylurea compounds, diflubenzuron and chlorfluazuron, show large differences in their toxicity against the larvae of insects like the tobacco budworm, Heliothis virescens, or the Egyptian cotton leafworm, Spodoptera littoralis, chlorfluazuron being about 100 times more toxic. This difference is due mainly to a much faster metabolism of diflubenzuron. Its half-life within the larvae is about 5 h, compared to about 50 h for chlorfluazuron. Chlorfluazuron is also the much better ovicide of the two, following injection of the compounds into the females of H. virescens. Again the difference in the rate of metabolism is the main cause. The rate of excretion of the parent benzoylureas is relatively low, but their metabolites are excreted very quickly.  相似文献   
27.
Induced Disease Resistance in Plants by Chemicals   总被引:23,自引:0,他引:23  
Plants can be induced locally and systemically to become more resistant to diseases through various biotic or abiotic stresses. The biological inducers include necrotizing pathogens, non- pathogens or root colonizing bacteria. Through at network of signal pathways they induce resistance spectra and marker proteins that are characteristic for the different plant species and activation systems. The best characterized signal pathway for systemically induced resistance is SAR (systemic acquired resistance) that is activated by localized infections with necrotizing pathogens. It is characterized by protection against a broad range of pathogens, by a set of induced proteins and by its dependence on salicylic acid (SA) Various chemicals have been discovered that seem to act at various points in these defense activating networks and mimic all or parts of the biological activation of resistance. Of these, only few have reached commercialization. The best- studied resistance activator is acibenzolar-5-methyl (BION). At low rates it activates resistance in many crops against a broad spectrum of diseases, including fungi, bacteria and viruses. In monocots, activated resistance by BION typically is very long lasting, while the lasting effect is less pronounced in dicots. BION is translocated systemically in plants and can take the place of SA in the natural SAR signal pathway, inducing the same spectrum of resistance and the same set of molecular markers. Probenazole (ORYZEMATE) is used mainly on rice against rice blast and bacterial leaf blight. Its mode of action is not well understood partly because biological systems of systemically induced resistance are not well defined in rice. Treated plants clearly respond faster and in a resistant manner to infections by the two pathogens. Other compounds like beta-aminobutyric acid as wdl as extracts from plants and microorganisms have also been described as resistance inducers. For most of these, neither the mode of action nor reliable pre-challenge markers are known and still other pathways for resistance activation are suspected. Resistance inducing chemicals that are able to induce broad disease resistance offer an additional option for the farmer to complement genetic disease resistance and the use of fungicides. If integrated properly in plant health management programs, they can prolong the useful life of both the resistance genes and the fungicides presently used.  相似文献   
28.
29.
30.
ABSTRACT The effect of variable temperature on the infection severity of Podosphaera macularis was investigated. Potted 'Symphony' hop plants were inoculated and exposed to different temperature regimes that included supraconducive temperatures (30 to 42 degrees C) for varying periods of time (2 to 9 h). Infection severity (lesions per cm(2) of leaf area) was calculated 7 to 10 days after inoculation. Immediately exposing inoculated plants to 30 degrees C for as little as 2 h significantly (P 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号