首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102113篇
  免费   4895篇
  国内免费   41篇
林业   5269篇
农学   3790篇
基础科学   702篇
  13959篇
综合类   15216篇
农作物   4161篇
水产渔业   4893篇
畜牧兽医   50332篇
园艺   1778篇
植物保护   6949篇
  2018年   2415篇
  2017年   2554篇
  2016年   1887篇
  2015年   1197篇
  2014年   1546篇
  2013年   4005篇
  2012年   3001篇
  2011年   4162篇
  2010年   3261篇
  2009年   3092篇
  2008年   4016篇
  2007年   4010篇
  2006年   3003篇
  2005年   2741篇
  2004年   2785篇
  2003年   2750篇
  2002年   2518篇
  2001年   2926篇
  2000年   2932篇
  1999年   2317篇
  1998年   1099篇
  1997年   1001篇
  1996年   930篇
  1995年   1068篇
  1994年   1012篇
  1993年   952篇
  1992年   1880篇
  1991年   1874篇
  1990年   2008篇
  1989年   1879篇
  1988年   1732篇
  1987年   1626篇
  1986年   1692篇
  1985年   1610篇
  1984年   1400篇
  1983年   1279篇
  1979年   1396篇
  1978年   1063篇
  1977年   1039篇
  1976年   1057篇
  1975年   1108篇
  1974年   1199篇
  1973年   1225篇
  1972年   1176篇
  1971年   1042篇
  1970年   1046篇
  1969年   1106篇
  1968年   972篇
  1967年   1049篇
  1966年   993篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Overland water and salt flows in a set of rice paddies   总被引:1,自引:0,他引:1  
Cultivation of paddy rice in semiarid areas of the world faces problems related to water scarcity. This paper aims at characterizing water use in a set of paddies located in the central Ebro basin of Spain using experimentation and computer simulation. A commercial field with six interconnected paddies, with a total area of 5.31 ha, was instrumented to measure discharge and water quality at the inflow and at the runoff outlet. The soil was classified as a Typic Calcixerept, and was characterized by a mild salinity (2.5 dS m−1) and an infiltration rate of 5.8 mm day−1. The evolution of flow depth at all paddies was recorded. Data from the 2002 rice-growing season was elaborated using a mass balance approach to estimate the infiltration rate and the evolution of discharge between paddies. Seasonal crop evapotranspiration, estimated with the surface renewal method, was 731 mm (5.1 mm day−1), very similar to that of other summer cereals grown in the area, like corn. The irrigation input was 1874 mm, deep percolation was 830 mm and surface runoff was 372 mm. Irrigation efficiency was estimated as 41%. The quality of surface runoff water was slightly degraded due to evapoconcentration and to the contact with the soil. During the period 2001–2003, the electrical conductivity of surface runoff water was 54% higher than that of irrigation water. However, the runoff water was suitable for irrigation. A mechanistic mass balance model of inter-paddy water flow permitted to conclude that improvements in irrigation efficiency cannot be easily obtained in the experimental conditions. Since deep percolation losses more than double surface runoff losses, a reduction in irrigation discharge would not have much room for efficiency improvement. Simulations also showed that rice irrigation performance was not negatively affected by the fluctuating inflow hydrograph. These hydrographs are typical of turnouts located at the tail end of tertiary irrigation ditches. In fact, these are the sites where rice has been historically cultivated in the study area, since local soils are often saline-sodic and can only grow paddy rice taking advantage of the low salinity of the irrigation water. The low infiltration rate characteristic of these saline-sodic soils (an experimental value of 3.2 mm day−1 was obtained) combined with a reduced irrigation discharge resulted in a simulated irrigation efficiency of 60%. Paddy rice irrigation efficiency can attain reasonable values in the local saline-sodic soils, where the infiltration rate is clearly smaller than the average daily rice evapotranspiration.  相似文献   
992.
Irrigation performance and water productivity can be benchmarked if estimates of spatially distributed yield and crop water use are available. A commonly used method to estimate crop evapotranspiration in irrigated areas is to multiply reference evapotranspiration values by appropriate crop coefficients. This study evaluated convenient ways to derive such coefficients using multispectral vegetation indices obtained by remote sensing. Detailed ground radiometric measurements were taken in small plots perpendicular to the crop rows to obtain canopy reflectance values. Ancillary measurements of green ground cover, plant height, leaf area index and biomass were taken in the cropped strip covered by the radiometer field-of-view. The results were up-scaled using 10 Landsat-5 and 1 Landsat-7 images. Crop measurements and ground radiometry were made at the time of Landsat overpass on two commercial fields, one grown with sugarbeet and the other with cotton. Crop height and ground cover were determined weekly in these two fields, three additional sugarbeet fields and one additional cotton field. The ground and satellite observations of canopy reflectance yielded similar results. Two vegetation indices, the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI) were evaluated. Both indices described the crop growth well, but SAVI was used in further evaluations because it could be conveniently related to both ground cover and the basal crop coefficient using a simple model. Based on these findings, crop water use variability was analyzed in a large sample of sugarbeet and cotton fields, within a homogeneous irrigation scheme in Southern Spain. The yield versus evapotranspiration data points were highly scattered for both cotton and sugarbeet. The yield values obtained from the sugarbeet fields and cotton fields were substantially lower than values predicted by a linear yield function, and close to a curvilinear yield function, respectively. Evapotranspired water productivity varied in the cotton fields from 0.3 to 0.78 kg m−3, and in the sugarbeet fields from 7.15 to 14.8 kg m−3.  相似文献   
993.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   
994.
Summary Citrus orchards (cv. Valencia and cv. Washington Navel Orange) on sandy soils in semi-arid South Australia (evaporation 1,900 mm, rainfall 240 mm) are irrigated with water from the River Murray having a chloride content of less than one to over 10 meq/1 (electrical conductivity 0.35–1.4 dS/m). Field observations and the literature suggest that at irrigation water salinities above 4 meq/1 Cl-, yield losses might be expected due to toxic effects of chloride rather than osmotic effects.To assess these effects irrigations at four salinity levels (range 2 to 5 meq/1 Cl) were applied to mature oranges trees (cv. Washington Navel) grown on Rough Lemon rootstock. Irrigations were carefully scheduled, with a total annual application of about 1,100 mm. The treatments resulted in soil salinities of 0.9 to 1.5 mS/cm (as measured with 4-electrode probes, at a depth of 0–50 cm), leaf chloride content on individual trees of 0.2% to 1.2%, and individual tree yields of 300 to 340 kg of fruit. On this orchard, a yield decrement of about 20% per 1 meq/1 chloride in the irrigation water was calculated, above a threshold level of about 4.3 meq/1 (Fig. 5). Reasons are given to support the view that the yield decrements found were probably due to chloride toxicity rather than osmotic stress.  相似文献   
995.
In Khorezm, a district of Uzbekistan situated in the Aral Sea Basin, soil salinization is an important driver of soil degradation in irrigated agriculture. The main objective of this study was to identify techniques that enable rapid estimation of soil salinity. Therefore, bulk electrical conductivity of the soil (ECa-meas) was measured with three different devices (2P, 4P, and CM-138) and electrical conductivity of the soil paste (ECp-meas) was measured with the so-called 2XP device. These measurements were compared with independent estimates of ECa-calc and ECp-calc based on laboratory measurements of the saturated extract, ECe, of soil samples from the same sites. Soil salinity could be assessed satisfactorily with all four devices. ECp-meas could be well reproduced by the 2XP device (R 2 = 0.76), whereas ECa-meas estimates using 2P, 4P, and CM-138 in the field were less accurate (R 2 < 0.50). The sensitivity of all devices to the main ions Cl and Ca2 + suggests that the measuring principles are similar for all instruments. The devices can therefore be used interchangeably. Field assessment of soil salinity was considerably enhanced by the use of CM-138, because large areas can be quickly assessed, which may be desirable in spite of the lower accuracy.  相似文献   
996.
Agricultural systems with grazing animals are increasingly under scrutiny for their contribution to quality degradation of waterways and water bodies. Soil type, climate, animal type and nitrogen (N) fertilisation are contributors to the variation in N that is leached through the soil profile into ground and surface water. It is difficult to explore the effect of these factors using experimentation only and modelling is proposed as an alternative. An agro-ecosystem model, EcoMod, was used to quantify the pastoral ecosystem responses to situational variability in climate and soil, choice of animal type and N fertilisation level within the Lake Taupo region of New Zealand. Factorial combinations of soil type (Oruanui and Waipahihi), climate (low, moderate and high rainfall), animal type (sheep, beef and dairy) and N fertilisation level (0 or 60 kg N/ha/yr) were simulated. High rainfall climates also had colder temperatures, grew less pasture and carried fewer animals overall which lead to less dung and urinary N returned. Therefore, even though a higher proportion of N returned ultimately leached at the higher rainfall sites, the total N leached did not differ greatly between sites. Weather variation between years had a marked influence on N leaching within a site, due to the timing and magnitude of rainfall events. In this region, for these two highly permeable soil types, N applied as fertiliser had a high propensity to leach, either after being taken up by plants, grazed and returned to the soil as dung and urine, or due to direct flow through the soil profile. Soil type had a considerable effect on N leaching risk, the timing of N leaching and mean pasture production. Nitrogen leaching was greatest from beef cattle, followed by dairy and sheep with the level of leaching related to urine deposition patterns for each animal type and due to the amount of N returned to the soil as excreta. Simulation results indicate that sheep farming systems with limited fertiliser N inputs will reduce N leaching from farms in the Lake Taupo catchment.  相似文献   
997.
Excess phosphorus (P) in freshwater systems has been associated with eutrophication in agro-ecosystems of the US Midwest and elsewhere. A better understanding of processes regulating both soluble reactive phosphorus (SRP) and total phosphorus (TP) exports to tile-drains is therefore critical to minimize P losses to streams while maintaining crop yield. This paper investigates SRP and TP dynamics at a high temporal resolution during four spring storms in two tile-drains in the US Midwest. Depending on the storm, median concentrations varied between 0.006-0.025 mg/L for SRP and 0.057-0.176 mg/L for TP. For large storms (>6 cm bulk precipitation), for which macropore flow represented between 43 and 50% of total tile-drain flow, SRP transport to tile-drains was primarily regulated by macropore flow. For smaller tile-flow generating events (<3 cm bulk precipitation), for which macropore flow only accounted for 11-17% of total tile-drain flow, SRP transport was primarily regulated by matrix flow. Total P transport to tile-drains was primarily regulated by macropore flow regardless of the storm. Soluble reactive P (0.01-1.83 mg m−2/storm) and TP (0.10-8.64 mg m−2/storm) export rates were extremely variable and positively significantly correlated to both mean discharge and bulk precipitation. Soluble reactive P accounted for 9.9-15.5% of TP fluxes for small tile-flow generating events (<3 cm bulk precipitation) and for 16.2-22.0% of TP fluxes for large precipitation events (>6 cm bulk precipitation). Although significant variations in tile-flow response to precipitation were observed, no significant differences in SRP and TP concentrations were observed between adjacent tile-drains. Results stress the dominance of particulate P and the importance of macropore flow in P transport to tile-drains in the US Midwest. Although only spring storms are investigated, this study brings critical insight into P dynamics in tile-drains at a critical time of the year for water quality management.  相似文献   
998.
The factors influencing the decision of smallholder farmers to adopt new farming technologies were studied with reference to rubber–tea intercropping in Sri Lanka. Rubber–tea intercropping has been recommended previously to rubber farmers as a means to improve productivity and income during the early pre-tapping phase of rubber growth. Although crop trials have shown that the two crops are agronomically compatible and potentially produce a combined economic yield superior to the yield of a sole crop grown on the same area of land, there is little evidence of widespread adoption of this practice among smallholder farmers in Sri Lanka. The aim of the study was to determine the major factors that influence the decision to undertake rubber–tea intercropping and to construct a predictive model that describes the likelihood of adoption of intercropping by traditional smallholder rubber growers. A rapid rural appraisal (RRA) was undertaken based on semi-structured interviews of 90 smallholder farmers in the main rubber growing low wet zone of Sri Lanka. Among a number of factors shown to significantly influence the decision to intercrop tea with rubber, three were shown to operate independently, namely level of income, source of income (i.e. solely from own farm or from farm plus additional off-farm enterprises), and availability of land considered suitable for tea cultivation. A statistical model developed through correlation and logistic analysis, which predicts the likelihood of a smallholder adopting intercropping based on these factors, is presented and discussed. The most likely combination of circumstances (82% probability) under which rubber–tea intercropping is practiced is shown to be where the farmer’s income is greater than Rs. 10,000 per month, where the farmer’s income is based solely on own farm enterprises, and where more than 80% of the farmer’s land area was judged to be suitable for tea cultivation. Conversely, 30% of smallholder farmers that chose not to intercrop did possess land suitable for tea cultivation. Qualitative responses to the RRA indicated that limitation of technical knowledge was the main problem subsequently faced by rubber farmers who had adopted rubber–tea intercropping. Results indicate that there is need for both income support through farm subsidies and further agricultural extension services, if rubber–tea intercropping is to be adopted more widely in Sri Lanka. The wider usefulness of the developed logistic model in determining the likelihood of adoption of intercropping by smallholder farmers is discussed.  相似文献   
999.
A three-dimensional mathematical hydraulic model was applied to calculate velocity profiles and discharge under steady, uniform flow conditions in rectangular and compound open-channel cross sections. The velocity profiles were used to calculate surface velocity coefficients for use with the float method for discharge estimation in the field. Surface velocity coefficients were calculated at increments of one-eighth of the base width from the vertical walls to the center of the cross section, and submergence of the float object from 0 to 30 cm, with a 5-cm depth increment. Model results were summarized to show the relationship between surface velocity coefficient and channel characteristics compared to values published by the US Bureau of Reclamation (USBR). For rectangular cross sections, the coefficients from the model are generally higher than the published USBR values. But the coefficients from the model and USBR are in very close agreement for the tested compound cross sections. The published coefficients by the USBR are a function of only average water depth. However, the model results show that the coefficient is also related to channel size, cross-sectional aspect ratio, surface roughness height, float submergence and lateral location of the float object. These factors should be included in the determination of the surface velocity coefficient to improve the discharge estimations from the application of the float method.  相似文献   
1000.
The standard FAO methodology for the determination of crop water requirements uses the product of reference evapotranspiration (ETo) and crop coefficient values. This methodology can be also applied to soil-grown plastic greenhouse crops, which occupy extended areas in the Mediterranean basin, but there are few data assessing methodologies for estimating ETo in plastic greenhouses. Free-drainage lysimeters were used between 1993 and 2004 to measure ETo inside a plastic greenhouse with a perennial grass in Almería, south-eastern Spain. Mean daily measured greenhouse ETo ranged from values slightly less than 1 mm day−1 during winter to values of approximately 4 mm day−1 during summer in July. When the greenhouse surface was whitened from March to September (a common practice to control temperature), measured ETo was reduced by an average of 21.4%. Different methodologies to calculate ETo were checked against the measurements in the greenhouse without and with whitening. The methods that performed best in terms of accuracy and statistics were: FAO56 Penman–Monteith with a fixed aerodynamic resistance of 150 s m−1, FAO24 Pan Evaporation with a constant Kp of 0.79, a locally-calibrated radiation method and Hargreaves. Given the data requirements of the different methods, the Hargreaves and the radiation methods are recommended for the calculation of greenhouse ETo because of their simplicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号