首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   4篇
  国内免费   1篇
林业   5篇
农学   33篇
  13篇
综合类   8篇
农作物   4篇
畜牧兽医   3篇
园艺   1篇
植物保护   3篇
  2022年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2003年   5篇
  2002年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1983年   2篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
21.
We investigated decomposition and nutrient release patterns of leaf and sheath litter of two important highland bamboo species (viz. Phyllostachys bambusoides Sieb. (Zucc.) and Arundinaria racemosa Munro) by using a litter bag technique. Our objective was to improve understanding of the addition of organic matter and nutrients to soil from the litter of two abundant highland bamboo species, species that support the local population of the region in many ways. N concentration and N/P ratio were significantly higher (p<0.01) in leaf litter of P. bambusoides. Significantly, larger values of lignin concentration, C/N ratio, and lignin/N ratio were found in the sheath litter of A racemosa. Weight loss of both leaf and sheath litter was strongly positively correlated with N and N/P ratio, and significantly negatively correlated (p<0.01) with C/N ratio. Lignin/N had a negative correlation with decay rate. In both species, only lignin concentration of the litter showed strong positive correlation with N release. Litter decomposition and N release patterns were similar for the two bamboo species, whereas, P release rate from leaf litter was higher in P. bambusoides and differed significantly between sheath and leaf litter for both species. The complex pattern of nutrient release through mineralization and immobilization during litter decomposition ensures nutrient availability in both managed and natural bamboo stands subjected to anthropogenic disturbances.  相似文献   
22.
通过连续3年对236个病毒来源的转基因水稻系(包括T1,T2和T3代)对靶病毒水稻齿叶矮缩病毒(RRSV)的抗性进行评价,发现抗性与所转RRSV基因片段有相关性,且随着繁殖世代的增加,转基因水稻的抗性逐渐减弱。  相似文献   
23.
An attempt has been made during 2012–2014 at to enumerate the ethno-medicinal evaluation and socio-economic importance of underutilized and unexploited fruits among the Garo tribe of west Garo hills district, Meghalaya, north-east India. The study was based on extensive field surveys, sample collection and interviews with the traditional healers as well as old aged men and women and survey in rural markets regarding their market demand, price and season of availability. Altogether 66 underutilized and unexploited fruits belonging to 34 families have been enumerated in this paper. The documented fruits were mostly used by the rural people to cure a number of ailments. In addition, these fruits also have socio-economic importance in the rural life of the tribal people like use as constructional timbers, firewood, charcoal, fodder, making dye, yielding oil and a number of value added products. Although, these fruits play an important role in the social and cultural life of Garo people, but these valuable species have been vanishing at very faster rate due to lack of proper documentation. Therefore, the claimed therapeutic values of these species are to be critically studied to establish their safety and effectiveness and both in situ and ex situ conservation measures should be immediately undertaken to safeguard the valuable indigenous rural resources of the world.  相似文献   
24.
The legume pod borer, Helicoverpa armigera, is one of the most devastating pests of pigeonpea. High levels of resistance to pod borer have been reported in the wild relative of pigeonpea, Cajanus scarabaeoides. Trichomes (their type, orientation, density and length) and their exudates on pod wall surface play an important role in the ovipositional behavior and host selection process of insect herbivores. They have been widely exploited as an insect defense mechanism in number of crops. In the present investigation, inheritance of resistance to pod borer and different types of trichomes (A, B, C and D) on the pod wall surface in the parents (C. cajan and C. scarabaeoides) and their F1, F2, BC1 (C. cajan × F1), and F3 generations has been studied. Trichomes of the wild parents (high density of the non-glandular trichomes C and D, and glandular trichome B and low density of glandular trichome A) were dominant over the trichome features of C. cajan. A single dominant gene as indicated by the segregation patterns individually will govern each trait in the F2 and backcross generation. Segregation ratio of 3 (resistant): 1 (susceptible) for resistance to pod borer in the F2 generation under field conditions was corroborated with a ratio of 1:1 in the backcross generation, and the ratio of 1 non-segregating (resistant): 2 segregating (3 resistant: 1 susceptible): 1 non-segregating (susceptible) in F3 generation. Similar results were obtained for pod borer resistance under no-choice conditions. Resistance to pod borer and trichomes associated with it (low density of type A trichome and high density of type C) are governed individually by a dominant allele of a single gene in C. scarabaeoides. Following backcrossing, these traits can be transferred from C. scarabaeoides into the cultivated background.  相似文献   
25.
Extensive and deep root systems have been recognized as one of the most important traits for improving chickpea (Cicer arietinum L.) productivity under progressively receding soil moisture conditions. However, available information on the range of variation for root traits is still limited. Genetic variability for the root traits was investigated using a cylinder culture system during two consecutive growth seasons in the mini-core germplasm collection of ICRISAT plus several wild relatives of chickpea. The largest genetic variability was observed at 35 days after sowing for root length density (RLD) (heritability, h 2 = 0.51 and 0.54) across seasons, and followed by the ratio of plant dry weight to root length density with h 2 of 0.37 and 0.50 for first and second season, respectively. The root growth of chickpea wild relatives was relatively poor compared to C. arietinum, except in case of C. reticulatum. An outstanding genotype, ICC 8261, which had the largest RLD and one of the deepest root system, was identified in chickpea mini-core germplasm collection. The accession ICC 4958 which was previously characterized as a source for drought avoidance in chickpea was confirmed as one with the most prolific and deep root system, although many superior accessions were also identified. The chickpea landraces collected from the Mediterranean and the west Asian region showed a significantly larger RLD than those from the south Asian region. In addition, the landraces originating from central Asia (former Soviet Union), characterized by arid agro-climatic conditions, also showed relatively larger RLD. As these regions are under-represented in the chickpea collection, they might be interesting areas for further germplasm exploration to identify new landraces with large RLD. The information on the genetic variability of chickpea root traits provides valuable baseline knowledge for further progress on the selection and breeding for drought avoidance root traits in chickpea.  相似文献   
26.
Summary Seed size as determined by seed weight, is an important trait for trade and component of yield and adaptation in chickpea (Cicer arietinum L.). Inheritance of seed size in chickpea was studied in a cross between ICC11255, a normal seed size parent (average 120 mg seed−1) and ICC 5002, a small seed size parent (average 50 mg seed−1). Seed weight observations on individual plants of parents, F1, F2, and backcross generations, along with reciprocal cross generations revealed that the normal seed size was dominant over small seed size. No maternal effect was detected for seed size. The numbers of individuals with normal, small and medium (average 150 mg seed−1) seed sizes in F 2 population were 1237, 323 and 111 fitting well to the expected ratio of 12:3:1 (χ2 = 0.923, P = 0.630). The segregation data of backcross generations also indicated that seed size in chickpea was controlled by two genes with dominance epistasis. We designate the genotype of ICC 11255 as Sd 1 Sd 1 sd 2 sd 2, and ICC 5002 as sd 1 sd 1Sd2 Sd 2 wherein Sd 1 is epistatic to Sd 2 and sd 2 alleles.  相似文献   
27.
Groundnut (Arachis hypogaea L.) is an important oilseed crop grown in more than 100 countries across wide range of environments. Frequent occurrence of drought is one of the limiting factors adversely affecting groundnut productivity, especially in rainfed areas, and hence genotypes having high water use efficiency (WUE) under limited available water need to be developed. In groundnut, WUE is correlated with SPAD chlorophyll meter reading (SCMR) and specific leaf area (SLA). These two traits, SCMR and SLA, can be used as surrogate traits for selecting for WUE. In order to improve SCMR and SLA, and in turn WUE in groundnut, a good knowledge of the genetic system controlling the expressions of these traits is essential for the selection of the most appropriate and efficient breeding procedure. The present investigation was conducted to determine the gene action controlling the inheritance of SCMR and SLA in two crosses, ICG 7243 × ICG 9418 and ICG 6766 × Chico, and their reciprocals. Six generations of each cross (P1, P2, F1, F2, BC1P1, and BC1P2) were evaluated for SCMR and SLA at two stages of the crop growth viz., 60 and 80 days after sowing (DAS). For SCMR at 80 DAS, additive effects were important in both the crosses whereas predominance of dominance effects with duplicate epistasis was observed for SCMR at 60 DAS and SLA at both stages in both the crosses. Predominance of additive effect for SCMR at 80 DAS suggested effective selection could be practiced even in early generations whereas for SCMR at 60 DAS and SLA at both stages in both crosses, it would be better to defer selection to later generations. Further, recording of SCMR and SLA should be done between 60 and 80 DAS for screening the germplasm lines for drought tolerance.  相似文献   
28.
29.
A new intact glucosinolate Cinnamoyl derivative [6'-O-trans-(4″- hydroxy cinnamoyl)-4-(methylsulphinyl) butyl glucosinolate] (A) has been isolated from Broccoli (Brassica oleracea L. var. italica) florets. The compound was isolated and characterized by LC, MS-ESI, FTIR, 1H and 13C NMR as well as 1H-1H COSY, DEPT 135° spectrometric experiments.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号