首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   31篇
  国内免费   3篇
林业   55篇
农学   42篇
基础科学   3篇
  82篇
综合类   30篇
农作物   12篇
水产渔业   56篇
畜牧兽医   188篇
园艺   2篇
植物保护   51篇
  2022年   9篇
  2021年   10篇
  2020年   13篇
  2019年   12篇
  2018年   15篇
  2017年   15篇
  2016年   18篇
  2015年   18篇
  2014年   16篇
  2013年   35篇
  2012年   35篇
  2011年   19篇
  2010年   12篇
  2009年   18篇
  2008年   33篇
  2007年   24篇
  2006年   26篇
  2005年   21篇
  2004年   28篇
  2003年   30篇
  2002年   17篇
  2001年   23篇
  2000年   23篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1985年   1篇
  1983年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有521条查询结果,搜索用时 15 毫秒
41.
Effects of temperature on food consumption, growth and oxygen consumption were estimated for the freshwater prawn Macrobrachium rosenbergii postlarvae at 23 °C, 28 °C and 33 °C in the laboratory. The results showed that the animal's initial body weight had a close linear relationship with food consumption and growth. Food consumption increased directly with temperature. Consumption rates (C; mg day?1 ind?1 ) of the 28 °C and 33 °C groups were much higher than that of the 23 °C group (P < 0.001), and the 33 °C group's consumption rate was higher than that of the 28 °C group (P < 0.05). The relationship of food consumption with temperature and initial body weight (W; mg) could be described as: C = 0.0679W + 0.185t? 3.17. Growth increased significantly with increased temperature. The relationship among specific growth rate, temperature and initial body weight was as follows: SGR = ?0.110W + 0.213t + 0.176. However, temperature showed no effect on growth efficiency. Oxygen consumption increased significantly with temperature (P < 0.01). The weight‐specific oxygen consumption rates (mg O2 g?1 h?1) at 23 °C, 28 °C and 33 °C were 0.83, 1.16 and 1.49 mg O2 g?1 h?1 for 61.92 mg M. rosenbergii.  相似文献   
42.
43.
Blood total antioxidant capacity (TAC) has become a key bio‐marker for animal health. Forest‐grazing cattle are known to forage various native plants that have high TAC. This study evaluated differences of plasma TAC between forest‐grazing (FG) and pasture‐grazing cattle (PG). Experiment 1 monitored the plasma TAC levels of 32 Japanese Black cattle. The level in PG did not change throughout the grazing period. However, that in FG, which increased from summer, was significantly higher than that in PG through fall (P < 0.05). In experiment 2, we used nine Japanese Black heifers and investigated their blood antioxidant parameters and the TAC in plants that the cattle consumed in late June and September. The plasma TAC levels in FG were significantly higher than those in PG in both periods (P < 0.05). Plasma levels of lipid peroxidation in FG tended to be lower than that in PG (P = 0.098). Furthermore, the TAC levels in various species of shrubs and trees consumed by FG were higher than those in pasture grasses. Results of this study show that plasma TAC of grazing Japanese Black cattle in forestland increase from summer through fall.  相似文献   
44.
Initial decomposition rates, changes in organic chemical components (acid-insoluble fraction, holocellulose, polyphenols, soluble carbohydrates) and nutrient dynamics (K, Mg, Ca, P, N) were examined for fine roots and leaves of Japanese cypress (Chamaecyparis obtusa). Litterbag experiments designed to evaluate the relative effects of litter type and position of litter supply in the soil were carried out, considering that root and leaf litter typically occupy different locations and have different substrate qualities. Litterbags of roots and leaves were placed at two positions (on the soil surface and in the humus layer), and collected every 3 months over one year. The mass loss rate and N release were slower during root decomposition in the humus layer than during leaf decomposition on the soil surface. These differences between root and leaf decomposition were mainly caused by the litter type, and the effect of the position on decomposition was relatively small. Root litter was less influenced by position related effects, such as differences in humidity, than leaf litter, and this recalcitrant trait to environmental effects may be responsible for the slower mass loss rate and N release in root decomposition. The results of the present study suggest that fine roots are persistent in the soil and serve an important role in N retention in forest ecosystems because of their litter substrate quality.  相似文献   
45.
E. Domon    T. Yanagisawa    A. Saito  K. Takeda 《Plant Breeding》2004,123(3):225-228
A high‐throughput single nucleotide polymorphism (SNP) genotyping procedure was developed to select amylose‐free barley mutants whose waxy genes had a C‐ to T‐base substitution in exon 5, which converted Gln‐89 of the wild‐type gene into a termination codon. An F2 population carrying an amylose‐free waxy gene was checked for segregation. Polymerase chain reaction with confronting two‐pair primers (PCR‐CTPP) produced allele‐specific PCR products that have different sizes and are inherited in a co‐dominant manner. Two alleles of the barley waxy gene with SNP were correctly identified in parental strains using the PCR‐CTPP procedure. Segregation of the SNP as detected by PCR‐CTPP in an F2 population fitted the expected 1:2:1 ratio. The PCR‐CTPP procedure can provide a time saving and cost‐effective alternative to derived cleaved amplified polymorphic sequence in marker‐assisted selection.  相似文献   
46.
47.
Deep-seeding tolerance, the emergence of seedlings from deep seeded conditions, is involved in stand establishment in semi-arid regions, where the soil surface is too dry for seed germination. Genes determining deep-seeding tolerance in barley were mapped using two doubled haploid populations derived from the following crosses: Harrington × TR306 (H/T)and Step toe × Morex (S/M). Significant quantitative trait loci (QTLs) for deep-seeding tolerance were found in each population. Two QTL sex plained 40% of the phenotypic variation in the H/T population and one QTL (S/M) 8% of the total phenotypic variance. Multiple QTLs accounting for coleoptile length and first internode length were detected in both populations. In the H/T population, there were coincident QTLs for deep-seeding tolerance, coleoptile length and first internode length on the long arm of chromosome 5H. These QTLs correspond with previously reported QTLs for abscisic acid and gibberellic acid response. QTL coincidence may be due to the pleiotropic effects of alleles at a single locus. This information may be useful for breeding programs manipulating morphological and physiological traits in order to develop varieties for semi-arid regions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
48.
1991年从日本引进国外麦类品种10252个,在我国黄淮海平原盐渍地上种植。经1992--1994年系统观察、分析和鉴定,初步选择出适合该类型区种植的高产、优质品种及大、小麦亲本材料。  相似文献   
49.
We compared the greenhouse gas (GHG) emissions from a log pile (LP) to those from a sand compaction pile (SCP) and from cement deep mixing (CDM) as measures against soil liquefaction, assuming that forest and waste management scenarios influence the GHG (CO2, CH4, and N2O) balance of wood. We found little difference between the LP and SCP methods with respect to GHG emissions from fossil fuel and limestone consumption. However, GHG emissions from the CDM method were seven times higher than emissions from the LP method. In the GHG balance of wood, when the percentage of CH4 emissions from carbon in underground wood was lower than 3.3%, permanent storage in the log achieved greater reductions in GHG emissions than using the waste log as fuel in place of coal or heavy oil. In order to obtain reductions in GHG emissions by replacing SCPs or CDM with LPs, sustainable forest management with reforestation and prevention of CH4 emissions from the underground log are essential. Using reforestation, permanent storage of the log, no CH4 emission from the log, and using logging residues instead of coal, the LP can achieve reductions in GHG emissions of 121 tonnes of CO2 per 100 m2 of improvement area by replacing CDM.  相似文献   
50.
The filamentous fungus flora on standing leaves of Typha latifolia in a bog was followed from late spring to early winter. A seasonal successional change of fungal colonizers was observed. Certain groups of species tended to be specific to a particular physiological condition of leaves. Leaf parasites and common primary saprophytes were major colonizers on the developing leaves. After the flowering time of host plant, facultative parasites invaded the aged leaves and finally became dominant on the dead leaves in early winter. A species of Fusarium, F. chlamydosporum was recognized as a main decomposer of the dead leaves near the water line in 1992. It may largely contribute to a smooth supply of dead aerial leaves for the heterotrophic community in the water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号