首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   15篇
林业   7篇
农学   1篇
  19篇
综合类   22篇
农作物   4篇
水产渔业   4篇
畜牧兽医   126篇
园艺   1篇
植物保护   5篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   12篇
  2012年   10篇
  2011年   4篇
  2010年   8篇
  2009年   11篇
  2008年   6篇
  2007年   11篇
  2006年   10篇
  2005年   6篇
  2004年   1篇
  2003年   9篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   15篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
181.
乌拉特前旗属干旱、半干旱地区,地貌类型复杂多样,造林立地条件较差。恶劣的自然条件,使大量土地日趋沙化,直接影响着这些地区的造林成活率和保存率的提高。文章对当前制约造林的沙化土地因素进行调查分析,提出治理的具体措施,可为同类地区提供造林技术参考。  相似文献   
182.
内蒙古乌拉特前旗属干旱、半干旱地区,地形、地貌复杂,土壤类型多样,造林立地条件较差。恶劣的自然条件,严重制约着造林成活率和保存率的提高。文章对当前制约该区造林成活率、保存率的因素进行调查分析,提出提高"两率"的具体措施,可为同类地区提供造林技术参考。  相似文献   
183.
Seasonal and annual N2O fluxes from urine-affected pasture were approximated with a mechanistic model based on Michaelis-Menten kinetics. The model combined the effects of soil nitrate-N, soil ammonium-N, soil temperature and soil moisture (all from the top 5cm) to calculate N2O emissions from nitrification (F nit ) and denitrification (F den ), with total N2O emission being the sum of the two (F tot =F nit +F den ). Best results were obtained when different kinetic parameters were used for periods of constant soil moisture conditions and after heavy rainfalls when a rapid change of the soil moisture status occurred. Modelled N2O emissions over a year were within the range of uncertainties of measured N2O emissions. Results indicate that the spatial variability of N2O emissions at times when all the model inupt variables were constant may be related to microorganism growth dynamics or enzyme production rates. Received: 2 October 1995  相似文献   
184.

Purpose  

Nitrous oxide (N2O) is a potent greenhouse gas and, in grazed grassland systems where animals graze outdoor pastures, most of the N2O is emitted from animal urine nitrogen (N) deposited during grazing. Recently, ammonia-oxidizing archaea (AOA) were found to be present in large numbers in soils as well in the ocean, suggesting a potentially important role for AOA, in addition to ammonia-oxidizing bacteria (AOB), in the nitrogen cycle. The relationship between N2O emissions and AOB and AOA populations is unknown. The objective of this study was to determine the quantitative relationship between N2O emissions and AOB and AOA populations in nitrogen-rich grassland soils.  相似文献   
185.
Plants significantly affect rates of carbon (C) turnover in soils, both because they are sources of carbon through exudation in the rhizosphere and litter‐fall, and because rhizosphere microbes stimulated by roots also metabolize native soil carbon. Different plant species affect these components of soil carbon turnover in different ways, but the quantitative information on this is lacking for different ecosystems and soil‐plant combinations. To compare the effects of grassland and forest plant species on the components of rhizosphere respiration in different soils, we grew ryegrass (Lolium perenne) and radiata pine (Pinus radiata D. Don) in two silt loam soils in pots in a glasshouse, and in seven samplings over 45 weeks measured total (Rtotal), root (Rroot) and root‐free soil respiration (Rrfs), the latter from respiration in unplanted controls. We calculated rhizosphere respiration (Rrhizo), defined here as the net of that fuelled by native soil C and root‐derived C, from Rtotal less Rroot+Rrfs. We also measured plant growth and total, water‐soluble and microbial biomass C in the soils at each sampling. Results showed that Rrfs decreased over the experimental period in both soils. Under ryegrass, Rroot, Rrhizo and Rtotal increased up to 14 weeks after planting and then stabilized, whereas under radiata pine, they continued to increase throughout the experiment. By the end of the experiment, the Rroot, Rrhizo and Rrfs components accounted for 49–58, 31–50 and 1–11% of soil total respiration under ryegrass, respectively, and 43–66, 29–53 and 1–5% under radiata pine. The greater Rroot, Rrhizo and Rtotal values under radiata pine were related to greater root biomass and root‐derived organic C, and enhanced microbial mineralization of native soil organic C.  相似文献   
186.
Nitrogen (N) from urine excreted by grazing animals can be transformed into N compounds that have detrimental effects on the environment. These include nitrate, which can cause eutrophication of waterways, and nitrous oxide, which is a greenhouse gas. Soil microbes mediate all of these N transformations, but the impact of urine on microbes and how initial soil conditions and urine chemical composition alter their responses to urine are not well understood. This study aimed to determine how soil inorganic N pools, nitrous oxide fluxes, soil microbial activity, biomass, and the community structure of bacteria containing amoA (nitrifiers), nirK, and nirS (denitrifiers) genes responded to the addition of urine over time. Bovine urine containing either a high (15.0 g K+ l?1) or low salt content (10.4 g K+ l?1) was added to soil cores at either low or high moisture content (hereafter termed dry and wet soil respectively; 35% or 70% water-filled pore space after the addition of urine). Changes in soil conditions, inorganic N pools, nitrous oxide fluxes, and the soil microbial community were then measured 1, 3, 8, 15, 29 and 44 days after urine addition. Urine addition increased soil ammonium concentrations by up to 2 mg g d.w.?1, soil pH by up to 2.7 units, and electrical conductivity (EC) by 1.0 and 1.6 dS m?1 in the low and high salt urine treatments respectively. In response, nitrate accumulation and nitrous oxide fluxes were lower in dry compared to wet urine-amended soils and slightly lower in high compared to low salt urine-amended soils. Nitrite concentrations were elevated (>3 μg g d.w.?1) for at least 15 days after urine addition in wet urine-amended soils, but were only this high in the dry urine-amended soils for 1 day after the addition of urine. Microbial biomass was reduced by up to half in the wet urine-amended soils, but was largely unaffected in the dry urine-amended soils. Urine addition affected the community structure of ammonia-oxidising and nitrite-reducing bacteria; this response was also stronger and more persistent in wet than in dry urine-amended soils. Overall, the changes in soil conditions caused by the addition of urine interacted to influence microbial responses, indicating that the effect of urine on soil microbes is likely to be context-dependent.  相似文献   
187.
 Nitrous oxide (N2O) emissions via the nitrification (I nit) and denitrification (I den) pathways were successfully measured with in-field incubation of soil cores in preserving jars at 0 Pa and 5–10 Pa acetylene. From the incubations, fractions of nitrification – N2O over total N2O (I nit / I tot) – and denitrification – N2O over total N2O (I den / I tot) – were obtained. Actual field emissions of N2O via nitrification (F nit) and denitrification (F den) were calculated by multiplying the fractions from the incubation technique with the daily N2O emission (F day) determined with a direct soil cover method. The approach presented here was successful for a whole range of soil moisture conditions in intensive grassland. F nit and F den followed the trends of soil ammonium and soil nitrate. Received: 31 October 1997  相似文献   
188.
Soil P transformations are primarily mediated by plant root and soil microbial activity. A short-term (40 weeks) glasshouse experiment with 15 grassland soils collected from around New Zealand was conducted to examine the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil microbial properties and microbiological processes involved in P dynamics. Results showed that the effect of plant species on soil microbial parameters varied greatly with soil type. Concentrations of microbial biomass C and soil respiration were significantly greater in six out of 15 soils under radiata pine compared with ryegrass, while there were no significant effects of plant species on these parameters in the remaining soils. However, microbial biomass P (MBP) was significantly lower in six soils under radiata pine, while there were no significant effects of plant species on MBP in the remaining soils. The latter indicated that P was released from the microbial biomass in response to greater P demand by radiata pine. Levels of water soluble organic C were significantly greater in most soils under radiata pine, compared with ryegrass, which suggested that greater root exudation might have occurred under radiata pine. Activities of acid and alkaline phosphatase and phosphodiesterase were generally lower in most soils under radiata pine, compared with ryegrass. The findings of this study indicate that root exudation plays an important role in increased soil microbial activities, solubility of organic P and mineralization of organic P in soils under radiata pine.  相似文献   
189.
Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time‐series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light‐based longitude and sea surface temperature‐based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid‐winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11–14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号