首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
林业   5篇
农学   1篇
  55篇
综合类   9篇
农作物   2篇
水产渔业   1篇
畜牧兽医   2篇
植物保护   2篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   1篇
  2014年   2篇
  2013年   14篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1995年   1篇
  1993年   1篇
  1983年   1篇
  1979年   1篇
  1953年   1篇
  1951年   1篇
排序方式: 共有77条查询结果,搜索用时 218 毫秒
41.
There is a growing necessity to replace chemical agents with ecofriendly materials, arising from the impact on the environment and/or human health, which calls for the design of new broad-spectrum fungicides. In this work, chitosan oligomers (COs), propolis (Ps) and silver nanoparticles (AgNPs) mixtures in solution were assessed to control the growth of different phytopathogenic fungi and oomycetes in vitro. Binary solutions of COs-Ps and COs-AgNPs evinced the highest antifungal effect against Fusarium circinatum and Diplodia pinea fungi, respectively, with a ca. 80% reduction in their mycelial growth. The COs solution by itself also proved to be greatly effective against Gremmeniella abietina, Cryphonectria parasitica and Heterobasidion annosum fungi, causing a reduction of 78%, 86% and 93% in their growth rate, respectively. Likewise, COs also attained a 100% growth inhibition on the oomycete Phytophthora cambivora. On the other hand, Ps inhibited totally the growth of Phytophthora ×alni and Phytophthora plurivora. The application of AgNPs reduced the mycelial growth of F. circinatum and D. pinea. However, the AgNPs in some binary and ternary mixtures had a counter-productive effect on the anti-fungal/oomycete activity. In spite of the fact that the anti-fungal/oomycete activity of the different treatments showed a dependence on the particular type of microorganism, these solutions based on natural compounds can be deemed as a promising tool for control of tree diseases.  相似文献   
42.
The passage of vehicles with heavy axle loads causes soil compaction, and this adversely affects soil properties and crop yield.The adverse effects can persist for several years due to significant changes in key soil properties. However, the mechanisms of the aforementioned effects are not well understood for conservation agriculture(CA)(e.g., no-till(NT)) wherein the use of heavy machinery is considerably common. Therefore, known compaction forces(0 Mg load for compaction(NT-0, control), two passages of 2.5 Mg water wagon axle load(NT-2), and four passages of 2.5 Mg water wagon axle load(NT-4)) were applied to all the plots annually for 20 consecutive years. The experiment was established in 1997 at the Waterman Agricultural and Natural Resources Laboratory(WANRL), Ohio State University, Columbus, Ohio. Each treatment was replicated thrice. Soil samples were obtained in November2016 to determine the effects of variations in the axle load and vehicular passages on carbon(C) and nitrogen(N) storage and selected soil properties of a Crosby silt loam soil under NT-based corn-soybean rotation with residue retention in Central Ohio, USA. Three locations were also randomly selected in an adjoining natural woodlot(WL) soil plot and sampled(30 m away from the compaction field) to compare the effects of vehicular traffic on soil under NT with WL soil. Results revealed that soil bulk density(ρb) and total porosity at 0–10 and 10–20 cm depths were not affected by the passages of vehicular traffic for 20 years under the NT system.The penetration resistance(PR)(1.86 and 2.03 MPa at 0–10 and 10–20 cm soil depths, respectively) was significantly higher under NT-4 compared with that under other treatments. Saturated hydraulic conductivity at 0–10 and 10–20 cm soil depths ranged from19.7 to 31.4 and 18.5 to 29.5 mm d~(-1), respectively, across all the treatments. The proportion of macroaggregates( 0.25 mm) and microaggregates( 0.25 mm), mean weight diameter and geometric mean diameter of aggregates, pH, electrical conductivity, and C and N contents and storage did not differ significantly between the treatments at either of the sampling soil depths. The data indicated that 2 to 4 passages of vehicles with 2.5 Mg of axle load did not cause significant compaction of the Crosby silt loam under NT compared with that under natural WL. Therefore, the continuous cultivation of row crops with NT and residue retention is feasible with passages of vehicular traffic for well-drained soils in Central Ohio.  相似文献   
43.
Summary Fruit rot disease caused by Phytophthora parasiticaDast. is a limiting factor in tomato production in Himachal Pradesh. 30 to 60 per cent fruits are damaged by this disease. Crosses were made between EC 54725 (Lycopersicon pimpinellifolium), a small tyuited type, resistant to fruit rot and four highly susceptible tomato commercial cultivars (Gola, Sioux, S12, and Lalmani). Studies of F1's, F2's and back crosses indicated that EC 54725 carries a dominant gene imparting resistance to fruit rot.  相似文献   
44.
We attempted to modify and evaluate existing sequential fractionation schemes for B involving the use of chemicals, which subsequently do not interfere with the measurement of B by colorimetry. Also evaluated was the contribution of various soil B fractions to the amount of B extracted by hot CaCl2, CaCl2‐mannitol, salicylic acid, ammonium acetate, HCl, and tartaric acid. For this purpose, 17 soils with diverse properties were used. The extraction scheme proposed here partitioned B into five pools, (i) readily soluble, (ii) specifically adsorbed, (iii) oxide bound, (iv) organically bound, and (v) residual boron, respectively extracted with 0.01 M CaCl2, 0.05 M KH2PO4, 0.175 M NH4‐oxalate (pH 3.25), 0.5 M NaOH, and HF + H2SO4 + HClO4. The procedure of elimination of color from extracts of oxide bound, organically bound, and residual B fractions was also evolved. Relationships of individual B fractions with physicochemical properties of the experimental soils confirmed the general validity of the proposed fractionation scheme. The relationships of different B fractions with extractable B in soils suggest that hot CaCl2 and salicylic acid may be better extractants for available B in soils.  相似文献   
45.
Evaluating the effects of management practices on soil physical and chemical properties would be valuable to explain field-level variability in crop production. A 23-year-old experiment on a Muscatune soil (fine-silty, mixed, superactive, mesic, Aquic Argiudolls) in Illinois with five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)] was evaluated. Specific objectives were to: (i) evaluate the effects of long-term N fertilization and cropping systems on field level changes in soil physical and chemical properties and crop yield, (ii) identify the most responsive soil physical and chemical properties to N fertilizer and crop management, and (iii) investigate the relationship between the selected soil properties and crop yield. Soil was collected in May 2004 to 30 cm depth and 20 soil physical and chemical properties were measured. The univariate analysis indicated that 14 soil properties were significantly influenced by at least one treatment effect (crops, N or crops × N). Due to multicollinearity among soil properties, principal component analysis (PCA) was used to group correlated properties, resulting in five soil properties such as soil organic carbon stock (OC stock), mean weight diameter (MWD), soil C:N ratio, exchangeable potassium (K+) and gravimetric moisture content (ω). Finally, the multiple regression analysis performed between PCA derived soil properties and corn and soybean yields retained all the representative soil properties from PCA except ω as yield predictors for corn (P < 0.001, R2 = 0.39) from CC system, whereas none of the soil properties were significantly related to corn and soybean yields from CS system. The soil properties most influenced by long-term N fertilization of continuous corn were successfully identified with PCA and multiple regression. The insignificant relationship between corn and soybean yields from CS system and PCA derived soil properties might be due to the lack of response of soybean to N fertilization. This study shows the integrated use of multivariate and regression analyses in identifying yield determining soil properties by eliminating the multicollinearity among soil properties.  相似文献   
46.
Productivity of resources on acid soils occupying one fourth of the total area in India is abysmally low. Lime is applied to such soils with the primary objective of increasing the productivity of crops by enhancing the availability of native and applied plant nutrients. Greenhouse pot experiments and laboratory experiments were conducted to evaluate the effects of lime and boron (B) on the availability of nutrients in soils and their uptake by plants. The application of lime enhanced the available nitrogen (N,), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), and zinc (Zn) content in soils, which was reflected in their uptake by sunflower (Helianthus annus). On the contrary, availability of copper (Cu), iron (Fe), and manganese (Mn) in soil was reduced due to liming. Sunflower responded very well in terms of dry matter yield to B application to the extent of 175% and 188% under 1 and 2 mg kg?1 applied levels of B, respectively. Dry matter yield of sunflower was reduced to the tune of 29.2 and 42.7% under 2/3 and 1 lime requirement (LR), respectively, over control. Lime application at 1/3 LR with 2 mg kg?1 of applied B emerged as an optimum combination in acid soils.  相似文献   
47.
The native vegetation in the Tropics is increasingly replaced by crops, pastures, tree plantations, or settlements with contradictory effects on soil organic carbon (SOC). Therefore, the general objective was to estimate the SOC stock depth distribution to 100-cm depth in soils of Costa Rica and to assess their theoretical carbon (C) sink capacity by different management practices. A study was established in three ecoregions of Costa Rica: the Isthmian-Atlantic Moist Forest (AM), the Pacific Dry Forest (PD), and the Montane Forest (MO) ecoregions. Within each ecoregion, three agricultural land uses and a mature forest were sampled to 100-cm depth. The SOC stock in 0–100 cm depth was 114–150 Mg C ha?1 for AM, 76–165 Mg C ha?1 for PD, and 166–246 Mg C ha?1 for MO. Land use had only weak effects on SOC concentrations and stocks except at PD where both were lower for soils under mango (Mangifera indica) and pasture. This may indicate soil degradation which was also supported by data on SOC stratification. However, it was generally unclear whether differences among land uses within each ecoregion already existed particularly at deeper depths before land-use change, and whether the sampling approach was sufficient to investigate them. Nevertheless, about 26–71% of Costa Rica's total C emissions may be offset by SOC sequestration in agricultural and forest soils. However, ecoregion-specific practices must be implemented to realize this potential.  相似文献   
48.
Abstract

Plantation establishment using exotic species on disturbed cultivated and undisturbed primary forest soils is common in Gambo district, southern Ethiopia, but their effects on soil properties are not fully known. This study investigated the effects of plantation species on major soil physical and chemical properties and further evaluated the soil quality under different land uses. Soil samples in triplicates, collected under different plantations, were analysed for their physical and chemical properties. Based on these soil properties, an integrated soil quality index was determined. The soil bulk density (BD) varied from 0.72 to 0.80 cm?3 in plantations established on primary forest land and natural forest and from 0.86 to 1.14 g cm?3 in those plantations established on cultivated soils. Also significantly lower pore volume and infiltration rate were observed under plantations established on cultivated lands than those on primary forest soils. Higher water volume (% at ?1500 kPa matric potential) was obtained in soils under Juniperus procera and natural forest compared with that under the rest of the plantations investigated. The concentration of soil organic carbon (SOC) varied from 3.4 to 10.2%, N from 0.3 to 1.0% and Av.P from 1.5 to 7.0% in soils under plantations and natural forest. Exchangeable cations generally showed a decreasing trend with depth in all land use types with minor exceptions. The concentrations of exchangeable Ca+2 varied from 6.5 to 22.7 cmol kg?1 and were significantly higher under Juniperus procera than under Eucalyptus species. The soil under plantations on previously cultivated lands showed soil quality index below 0.5 (the baseline value), while those established on undisturbed forest soil were generally above that value. The study results suggest that selecting species such as Juniperus procera and prolonging the harvesting period would improve and maintain the quality of soil properties.  相似文献   
49.
ABSTRACT

A long-term field experiment was performed to assess the effects of fertilization regimes on greenhouse gas emissions, soil properties, soil denitrifies, and maize (Zea mays) grain yield on Mollisols of Northeastern China. Chemical nitrogen (N), phosphorus (P), and potassium (K) fertilizers plus pig manure (MNPK) treatment significantly increased soil N2O emissions by 29.9–226.4% and global warming potential (GWP) by 29.8–230.7% compared to unfertilized control (CK), chemical N fertilizer only (N), chemical N, P, and K fertilizers (NPK) and chemical N, P, and K fertilizers plus corn straw (SNPK) treatments. However, the MNPK treatment yielded similar greenhouse gas intensity (GHGI) as compared with other treatments, mainly due to higher maize grain yield. There were also higher gene copy numbers of nirK, nirS, and nosZ in topsoil (0–20 cm depth) under MNPK treatment. Automatic linear modeling analysis indicated that main factors influencing soil N2O emissions were soil organic carbon (SOC), NO3? content, and nirK gene abundance. Although the application of chemical fertilizers plus organic manure increases N2O emissions due to higher N and C availability and nirK gene activity in the soil, this is still a promising fertilizer management due to its notable enhancement of maize grain yield and SOC content.  相似文献   
50.
ABSTRACT

Iron (Fe) deficiency is one of the serious nutritional disorders in aerobically grown rice on upland alkaline and calcareous soils, which leads to a decline in productivity. With a view to resolve the Fe-deficiency syndrome in aerobic rice, the influence of soil moisture regimes, farmyard manure (FYM) and applied Fe on the release of Fe was assessed under an incubation study. A field experiment was also conducted to evaluate the relative effectiveness of soil and foliar applications of Fe in alleviating Fe deficiency using four rice cultivars (‘IR 36’, ‘IR 64’, ‘IR 71525-19-1-1’ and ‘CT 6510-24-1-2’). Results of incubation study indicated that the application of FYM marginally improved the diethylene triamine pentaacetic acid (DTPA)-Fe status of soil over control. However, application of iron sulfate (FeSO4 · 7H2O) at 14 mg Fe/kg with FYM released as much Fe as did the application of 27 mg Fe/kg as FeSO4 7H2O alone. Comparatively higher amounts of Fe were released under water saturation than that under drier soil moisture regimes and the effect of incubation period in releasing Fe was pronounced only under water saturation.

Under field study, supplementation of Fe through integrated or inorganic source caused improvement in the DTPA and ammonium acetate (NH4OAc) extractable Fe similar to that recorded under incubation. The foliar application of Fe (3% FeSO4 7H2O solution, thrice at 40, 60, and 75 days after sowing of rice, i.e., 45 kg FeSO4.7H2O/ha) was most effective and economical in correcting Fe deficiency in aerobic rice, followed by soil application of 150 kg FeSO4.7H2O + 10 t FYM/ ha and 305 kg FeSO4.7H2O/ha. Among the rice cultivars, ‘CT 6510-24-1-2’ and ‘IR 71525-19-1-1’ performed better under aerobic condition compared to ‘IR 36’ and ‘IR 64’. Differential response of rice cultivars to applied Fe was not related to Fe-nutrition; rather it was apparently related with inherent ability of cultivars to grow under water-stress condition. Ferrous iron (FeII) content in rice plants proved to be a better index of Fe-nutrition status compared to total plant Fe and chemically extractable soil Fe. The FeII concentration of ≥ 37 mg kg?1 in plants (on dry weight basis) appeared to be an adequate level at 60 days after sowing for direct seeded rice grown under upland aerobic condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号