首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
林业   1篇
农学   4篇
  11篇
综合类   5篇
农作物   7篇
水产渔业   1篇
畜牧兽医   6篇
园艺   1篇
植物保护   8篇
  2023年   3篇
  2022年   1篇
  2021年   8篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
31.
Drought stress affects plant growth and causes significant issues in meeting global demand for food crops and fodder. Drought can cause physiological, physicochemical, and morphological changes in plants, which negatively affects plant growth and productivity. To combat this under the increasing global threat of water shortage and rapid population expansion, it is crucial to develop strategies to meet global food demands. Plant growth-promoting rhizobacteria (PGPR) may provide a safe solution to enhancing crop yields through various mechanisms. These soil bacteria can provide drought tolerance to crop plants, allowing them to survive and thrive in water-scarce conditions. Productions of phytohormones, free radical-scavenging enzymes, and stress-combating enzymes that can increase tolerance to drought-induced stress are key features of plant-associated microbial communities. This review summarizes the beneficial properties of microbes that help plants tolerate water scarcity and highlights the bacterial mechanisms that enhance drought tolerance in plants.  相似文献   
32.
Sugar cane is sensitive to enormous sucrose losses induced by physio-chemical and microbial changes, the severity being increased during the time lag between harvest and crushing in the mills. Minimization of the sucrose losses in the field is essential for better sugar recovery and prevention of sucrose losses. An experiment was conducted to evaluate the efficacy of glutaraldehyde and benzalkonium chloride for their effects on the microbial counts and physio-chemical changes responsible for sucrose losses. Glutaraldehyde and benzalkonium chloride (1000 + 250 ppm) reduced the losses in sucrose content to 7.1% as compared to the 30.8% loss in the control, thus improving the performance by 76.9%. The application of chemicals reduced the acid invertase activity (by 60%), lowered weight loss, titrable acidity, reducing sugars content, dextran, ethanol, and ethylene production and respiration rates. The application led to the reduction in the total bacterial, fungal, Leuconostoc, and yeast counts by 67.92, 51.3%, 26.08, and 51.2%, respectively.  相似文献   
33.
34.
35.
Soil cadmium (Cd) causes toxicity and oxidative stress, alters biochemical processes and rootknot formation in rice. Irrigation of exogenous peroxidase (POX) together with its co-substrate H2O2(POXRice + H2O2), is likely to have protective effect upon the biochemical and nodular changes in ricegrown in Cd-rich soil. Exposure to Cd concentration of 1.00 mg/L increased oxidative stress, loss of cellviability, electrolyte leakage and root knot formation, whereas it significantly lowered the chlorophyll leveland rhizobium growth in rice. Irrigation of exogenous POXRice + H2O2 to Cd-stressed rice seedlingsreversed the Cd-induced alterations in rice to levels similar in control (non-stressed) seedlings. Resultsprovided strong evidence of exogenous POXRice + H2O2-mediated reversal and restoration of physiologicaland biochemical processes as well as increased resistance of rice seedlings to root knot formation.Irrigation with POXRice + H2O2 appeared to contribute towards bringing normoxic conditions in the otherwisehypoxic soil environment by enhancing the O2 in pot-experiments due to reduced Cd uptake, enhancedmineral homeostasis of essential elements viz. P, Fe, Mo, Mg and Mn for maintenance of root architecturedamaged by lipid peroxidation and reduction in oxidative stress by reducing Cd-induced reactive oxygenspecies generation. Therefore, the mitigation of Cd-toxicity in rice through this novel approach appeared tobe a promising mode to limit Cd-uptake, modulate protective and tolerance mechanisms for sustainablerice yield in Cd-contaminated rice-croplands and prevent nematode attack in rice, however, more detailedstudies are needed prior to large scale applications.  相似文献   
36.
Spleen samples from 14 mink that were trapped in 4 counties of Nova Scotia were tested for the presence of the Aleutian mink disease virus (AMDV) by polymerase chain reaction. Viral DNA was not detected in samples from Kings County (n = 2), but was detected in all the mink sampled from Colchester (n = 2) and Halifax (n = 6) counties, and 3 of 4 mink from Yarmouth County. The high level of AMDV-infected mink in Colchester and Halifax counties may pose a serious threat to the captive mink and wild animal populations. Because treatment of infected free-ranging mink is not an option, AMDV control strategies for the captive mink should be primarily focused on bio-security to protect clean ranches.  相似文献   
37.
38.
Fusarium wilt (Fusarium oxysporum f. sp. ciceris) causes significant yield losses in chickpea worldwide. Faster, reliable and more specific molecular detection techniques were developed for the detection of Fusarium oxysporum f. sp. ciceris (Foc). The sequences obtained from multiple alignments of target genes, namely, translation elongation factor-1α (TEF-1α), β-tubulin, and internal transcribed spacer (ITS), were used to design Foc-specific markers/probes. One set of TEF-1α-based molecular marker, namely, SPα-F and R, two sets of β-tubulin-based markers, namely, SPβ1-F and R, and SPβ2-F and R, and one set of ITS gene, namely, SPT-F and R, were developed for the detection and quantification of Foc from diverse samples. The specificity and sensitivity of the designed molecular markers were evaluated through conventional and real-time PCR assays which differentiated the Foc from closely related species of Fusarium and other plant pathogens. In conventional PCR, the minimum detection limits of the markers ranged from 12.5 pg to 100 pg for genomic DNA of Foc and 0.5 ng to 10 ng for infected plant samples. In real-time PCR assay, the minimum detection limits of the markers ranged from 0.001 pg to 0.25 pg for genomic DNA of Foc and from 0.04 pg to 1.5 pg for the infected plant samples. Thus, the markers designed in the present study were found to be specific for Foc and can be used consistently for the detection and identification of Foc isolates. The probes developed from the two sets of markers, namely, SPα and SPβ2, also showed specificity with Foc.  相似文献   
39.
40.
甘蔗收获后蔗糖分降低是蔗糖加工单位的主要问题之一,特别是那些在高温下持续压榨的地区。通过研究评估榨季后期甘蔗收获后蔗糖分的损失量及其与酸性转化酶和葡聚糖蔗糖酶活性的关系,结果表明,甘蔗收获后,随着这两种酶活性的上升,甘蔗的商品蔗糖急剧下降。刚收获的甘蔗商品蔗糖值为10.88,在收获48、240h后,则分别降低2.27、6.59个单位,10d后蔗糖分降低约60%。对收获的甘蔗淋水并覆盖蔗叶,其蔗糖分降低约44%,而经化学物质处理并覆盖蔗叶的甘蔗蔗糖分减少27%。在甘蔗贮放期间,其蔗糖酸性转化酶和葡聚糖蔗糖酶活性明显增加。经化学处理并覆盖蔗叶后,收获甘蔗的两种酶活性明显下降。研究结果还表明,通过应用抗菌和抗转化化学物质配方具有使后期收获的甘蔗蔗糖分降低到最小的可能性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号