首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
林业   2篇
农学   16篇
  9篇
综合类   3篇
农作物   13篇
水产渔业   13篇
畜牧兽医   21篇
园艺   1篇
植物保护   3篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
61.
Anthracnose caused by the fungus Colletotrichum lindemuthianum is the most destructive disease of cowpea. Field-type cowpeas show various levels of resistance, whereas pole-type vegetable cowpeas are highly susceptible. Transfer of resistance available in field types to vegetable types is a major breeding objective in cowpea. This paper details the development of an F2 mapping population by crossing field-type cowpea variety Kanakamony (Vigna unguiculata ssp. cylindrica) with pole-type vegetable cowpea variety Sharika (Vigna unguiculata ssp. sesquipedalis), screening this population with artificial inoculation and Bulked Segregant Analysis (BSA) with random marker systems Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeats (ISSR); the objective is to identify the markers linked with major resistance-contributing genes. RAPD primer OPA02 has yielded marker at 850 bp in susceptible genome, whereas ISSR primers UBC810 and UBC811 have yielded markers at 1.4 kb and 1.5 kb respectively in resistant genomes. These markers were reproducible and their linkage with resistance and suitability in marker assisted selection (MAS) were confirmed through co-segregation analysis in F3 population. UBC811 marker was eluted, cloned on pGEM-T, and sequenced. The sequence had shown that this marker is anchored on LRR receptor-like serine/t\hreonine protein kinase gene which could be involved in the resistance mechanism.  相似文献   
62.
The aim of this study was to develop a competitive inhibition ELISA (CI-ELISA) for detection of antibodies to bovine viral diarrhea virus (BVDV) using the helicase domain of NS3 (non-structural) protein and monoclonal antibody (MAb) against it and to estimate its sensitivity and specificity using two commercial ELISA kits as independent references. The 45-kDa helicase domain of NS3 protein of BVDV was expressed in Escherichia coli and 18MAbs were developed against it. MAb-11G8 was selected for use in CI-ELISA on the basis of maximum inhibition (90%) obtained with BVDV type 1 infected calf serum. Based on the distribution of percent inhibition of known negative sera (n=166), a cut-off value was set at 40% inhibition. In testing 914 field serum samples of cattle (810) and buffaloes (104), the CI-ELISA showed a relative specificity of 95.75% and 97.38% and sensitivity of 96% and 94.43% with Ingenesa kit and Institut Pourquier kit, respectively. This study proved that the use of helicase domain of NS3 (45-kDa) is equally good as the whole NS3 protein (80-kDa) used in commercial kits for detection of BVDV antibodies in cattle and buffaloes.  相似文献   
63.
64.
A continuous cell line has been developed from thymus explants of Catla catla and the cells have been subcultured for 63 passages. The cells exhibited optimum growth at 30°C in L‐15 medium containing 15% foetal bovine serum. The cultured cells engulfed yeast cells and fluorescent latex beads. These cells produced reactive oxygen and nitrogen intermediates following stimulation with lipopolysaccharide and phorbol esters. The culture supernatant from the cultured cells had lysozyme activity and these cells demonstrated Fc receptors. Almost all the cells were positive for alpha‐naphthyl acetate esterase enzyme suggesting that the cells are of macrophage lineage and therefore, the cell line was designated as catla thymus macrophage (CTM) cell line. CTM cells formed aggregates around zoospores of Aphanomyces invadans, but were unable to inhibit the germination of spores. The karyotype analysis of CTM cells at 25th passage revealed a typical diploid model with 50 chromosomes per cell. Partial amplification, sequencing and alignment of fragments of two mitochondrial genes 16S rRNA and cytochrome c oxidase subunit 1 confirmed that the CTM cell line originated from C. catla. This cell line should be useful for studying the role of macrophages in differentiation and maturation of thymocytes and can be a source of macrophage‐specific enzymes and cytokines.  相似文献   
65.
Drought is becoming a major threat to rice farming across the globe owing to the depletion of water tables in rice-growing belts. Drought affects rice plants at multiple stages, causing damage at morphological and physio-biochemical levels, leading to severe losses that exceed losses from all other stresses. The amalgamation of conventional breeding methods with modern molecular biology tools and biometrical methods could help accelerate the genetic gain for drought tolerance in rice. Many drought-tolerance traits with genetic determinants have been identified and exploited for tolerance rice variety breeding. The integration of genome-wide association study and genomic selection tools with speed breeding shortened the breeding cycle and aided in rapid improvement of genetic gain. In this review, we emphasized the progress made through classical breeding as well as the limitations and usefulness of current genomic methods in improving drought tolerance. We briefly addressed methods for identifying genetic determinants for drought tolerance and deploying them through genomics-assisted breeding programmes to develop high-yielding drought-tolerant rice cultivars.  相似文献   
66.
Phytoplankton are prominent organisms that contain numerous bioactive substances and secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria, diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much interest in this field of research. Because of their richness and complexity, they have great potential as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms and are hazardous to animals and human health. However, they may be effective as therapeutic pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes, and hypertension. In this review, we have focused on the properties of different toxins produced by phytoplankton, as well as their beneficial effects and potential biomedical applications. The anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement or cancer treatment. Moreover, they also displayed promising applications in other ailments and diseases such as Alzheimer’s disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation, allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins, as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have also been reviewed.  相似文献   
67.
‘Polima’ cytoplasmic male sterility (CMS) was transferred from ‘Polima’ Brassica napus ‘ISN 706’to five different cultivars of Brassica campestris (‘Pusa kalyani’, ‘Pant toria’, ‘Candle’, ‘Tobin’ and ‘ATC 94211′) by repeated backcrossing. It was observed that, while ‘Polima’ CMS manifested complete and stable male sterility in the nuclear backgrounds of ‘Pusa kalyani’, ‘Pant toria’, and ‘Tobin’, the cultivars ‘Candle’ and ‘ATC 94211’possessed the restorer gene for this CMS in the heterozygous condition. An analysis of F1 and F2 generations of ‘Polima’‘Pusa kalyani’בCandle’ and ‘Polima’‘Pusa kalyani’בATC 94211’ revealed that restoration is controlled by a single dominant gene. Identification of stable maintainers and restorers of ‘Polima’ CMS could facilitate the development of hybrid varieties in B. campestris.  相似文献   
68.
An experiment was conducted to replace soya bean meal (SBM) with cashew nut meal (CNM) in the diet of tilapia (Oreochromis mossambicus). Five isonitrogenous (30% CP) and isolipidic (6% CL) diets, CNM0 to CNM4, were prepared replacing SBM at 0%, 12.5%, 25%, 37.5% and 50% with CNM. The feeding trial was conducted in FRP digestibility tanks of 150 L capacity for 60 days. Twenty tilapia fry (20.56 ± 0.05 g) were stocked in each tank. The final weight, weight gain and weight gain% of tilapia that received the CNM4 diet were significantly higher (p < .01) among the treatments. The significantly higher nutrient utilization efficiency in terms of FCR, PER, PRE and LRE was obtained in the CNM4 group. Similarly, a significantly lower (p < .01) body moisture content and a significantly higher (p < .05) body protein content were also observed in the CNM4 diet‐fed group. In tilapia fed the CNM4 diet, the activity of both protease and amylase enzymes was significantly higher (p < .05), but the amylase:protease ratio (A:P) was significantly lower (p < .05). Protease, amylase and A:P were positively correlated with the nutrient digestibility coefficient. The serum protein, albumin and globulin of tilapia fed the CNM4 diet were significantly higher (p < .05) and the liver status enzymes did not vary (p > .05) among the treatments. It can be concluded from the study that 50% replacement of SBM with CNM in the diet is suitable for the enhancement of growth, nutrient utilization and health status of tilapia.  相似文献   
69.
Tedera (Bituminaria bituminosa vars. albomarginata and crassiuscula) is a perennial pasture species with agronomic characters ideally suited to Mediterranean climates. Tedera seed has a period of after-ripening or primary dormancy typically lasting three months, which delays assessment and breeding of elite hybrid varieties. Temperature, chemical and mechanical methods were investigated in conjunction with in vitro culture to circumvent this dormancy period across a range of parental and hybrid genotypes. Temperature treatment of T5 (Tedera accession 5) and T48 (Tedera accession 48) alone was not sufficient to break dormancy (24.0% and 14.7% germination); however, when combined with soaking in gibberellic acid (GA3) and mechanical scarification resulted in 79.7% and 84.3% germination respectively. In an effort to further improve this result for valuable hybrid genotypes, we combined mechanical scarification with removal of seed coat after imbibition and in vitro culture on B5 medium until radicle emergence. This resulted in breaking dormancy from 96% to 100% of parent seeds and 100% of hybrid seeds. Hardening the germinated F1 or F2 seedlings 4 d after first transfer to in vitro culture resulted in 100% survival of plants to soil. This procedure is now used on a routine basis in the Australian tedera breeding programme.  相似文献   
70.
Y. S. Sodhi    A. Mukhopadhyay    N. Arumugam    J. K. Verma    V. Gupta    D. Pental  A. K. Pradhan 《Plant Breeding》2002,121(6):508-511
Analysis of the glucosinolate content and composition by high‐pressure liquid chromatography indicated that varieties of Brassica juncea bred and grown in India have a high glucosinolate content characterized by the presence of 2‐propenyl (allyl) and 3‐butenyl as the major and 4‐pentenyl as the minor fractions. In contrast, the B. juncea germplasm from other countries is characterized by the presence of 2‐propenyl as the major glucosinolate fraction, trace amounts of 3‐butenyl and a total lack of the 4‐pentenyl types. In order to transfer the low glucosinolate trait to Indian B. juncea, the inheritance of total glucosinolates was investigated using doubled haploid (DH) populations derived from F1 (DH1) and BC1 (BC1DH) of a cross between ‘Varuna’ (the most widely cultivated high glucosinolate variety of India) and ‘Heera’ (a non‐allyl type low glucosinolate line). A total of 752 DH1 and 1263 BC1DH gave rise to seven and 11 low glucosinolate (containing less than 18 μmol/g seed) individuals, respectively. On the basis of the frequency of the low glucosinolate individuals, the total glucosinolate was found to be under the control of seven genes. There was presence of both allyl and non‐allyl types in DH1 and BC1DH low‐glucosinolate individuals and absence of 3‐butenyl glucosinolate in some of the BC1DH low glucosinolate individuals, indicating segregation for these fractions in the population. The size of the segregating DH population proved to be crucial for precise determination of the number of genes controlling the trait. Because of the large number of genes involved, incorporation of low glucosinolate trait in Indian B. juncea should be approached through doubled haploid (DH) breeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号