首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
林业   1篇
  8篇
综合类   1篇
畜牧兽医   1篇
  2018年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
Ventilation processes inside the greenhouse strongly affect air renewal and internal climatic conditions, which themselves interact with the growth and homogeneity of the crop. Natural ventilation is often chosen since it is the most economic method available.Studies of internal distributed climate induced by ventilation have been taking place for the past 25 years. Experimental studies have pointed out the impact of vent configurations on airflow pattern, particularly when the wind is the main driving force. However, the development of computational fluid dynamics (CFDs) has only recently provided the opportunity to simulate the climate inside greenhouses for known vent configurations, and to test a wide range of geometries with different vent combinations under different climatic conditions.In this article, the main factors governing air movements inside the greenhouse are first analysed. The characteristics of the laboratory scale models and field experiments are reviewed, with particular focus on the technologies implemented. The principles of CFD, the main modelling approach, together with its adaptations to greenhouse climate simulation, are then described in detail. Conclusions of studies concerning ventilation efficiency inside greenhouses are reviewed with respect to greenhouse geometry and opening arrangements. Other parameters affecting ventilation, such as wind speed and direction, the addition of insect-proof or shading screens, and interactions with the crop, are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号