首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76994篇
  免费   4352篇
  国内免费   40篇
林业   3674篇
农学   2659篇
基础科学   513篇
  9914篇
综合类   12451篇
农作物   2801篇
水产渔业   4130篇
畜牧兽医   38930篇
园艺   1089篇
植物保护   5225篇
  2019年   722篇
  2018年   1214篇
  2017年   1264篇
  2016年   1219篇
  2015年   1058篇
  2014年   1297篇
  2013年   2877篇
  2012年   2482篇
  2011年   2992篇
  2010年   1962篇
  2009年   1965篇
  2008年   3013篇
  2007年   2812篇
  2006年   2740篇
  2005年   2481篇
  2004年   2543篇
  2003年   2487篇
  2002年   2381篇
  2001年   2431篇
  2000年   2422篇
  1999年   1983篇
  1998年   960篇
  1997年   863篇
  1996年   824篇
  1995年   906篇
  1994年   880篇
  1993年   808篇
  1992年   1552篇
  1991年   1571篇
  1990年   1694篇
  1989年   1535篇
  1988年   1471篇
  1987年   1365篇
  1986年   1403篇
  1985年   1365篇
  1984年   1153篇
  1983年   1046篇
  1982年   647篇
  1979年   1023篇
  1978年   809篇
  1977年   732篇
  1976年   686篇
  1975年   729篇
  1974年   774篇
  1973年   846篇
  1972年   808篇
  1971年   754篇
  1970年   731篇
  1969年   744篇
  1967年   658篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
To find a connection between polyamines and various protective effectors involved in the development of cold tolerance, eight different cereal genotypes, including wheat, barley and oat species, were investigated during the acclimation phase to low temperature. Exposure to low temperature induced different changes in the levels of polyamines, and other signalling molecules, such as salicylic acid and abscisic acid, and of other protective compounds, namely flavonols, sugars and antioxidant enzyme activity, and in the lipid composition of certain membrane factions. The most remarkable differences were observed in the oat varieties compared to the other cereal genotypes, which was manifested in the lack of spermidine accumulation and of decrease in trans‐Δ3‐hexadecanoic acid content, in lower initial and not cold‐inducible abscisic acid content and guaiacol peroxidase activity after cold treatment. Correlation analysis revealed that spermidine shows strong positive relationship with flavonols, abscisic acid and ascorbate peroxidase, while was in negative relationship with trans‐Δ3‐hexadecanoic acid. These results suggest that spermidine may have a crucial role in the cold acclimation signalling processes in cereals.  相似文献   
942.
Susceptibility of crops to drought may change under atmospheric CO2 enrichment. We tested the effects of CO2 enrichment and drought on the older malting barley cultivar Golden Promise (GP) and the recent variety Bambina (BA). Hypothesizing that CO2 enrichment mitigates the adverse effects of drought and that GP shows a stronger response to CO2 enrichment than BA, plants of both cultivars were grown in climate chambers. Optimal and reduced watering levels and two CO2 concentrations (380 and 550 ppm) were used to investigate photosynthetic parameters, growth and yield. In contrast to expectations, CO2 increased total plant biomass by 34 % in the modern cultivar while the growth stimulation was not significant in GP. As a reaction to drought, BA showed reduced biomass under elevated CO2, which was not seen in GP. Grain yield and harvest index (HI) were negatively influenced by drought and increased by CO2 enrichment. BA formed higher grain yield and had higher water‐use efficiency of grain yield and HI compared to GP. CO2 fertilization compensated for the negative effect of drought on grain yield and HI, especially in GP. Stomatal conductance proved to be the gas exchange parameter most sensitive to drought. Photosynthetic rate of BA showed more pronounced reaction to drought compared to GP. Overall, BA turned out to respond more intense to changes in water supply and CO2 enrichment than the older GP.  相似文献   
943.
Veterinary Research Communications -  相似文献   
944.
Changes to water‐level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water‐level regimes on shore‐spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore‐spawning kokanee do not currently receive a substrate‐mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore‐spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.  相似文献   
945.
Resource polymorphism may play an important role in the process of speciation. The Arctic char (Salvelinus alpinus) exhibits great phenotypic and genetic diversity across its range, making it an ideal species for studies of resource polymorphism and divergence. Here, we investigated genetic variation at 11 microsatellite loci among 287 Arctic char from five isolated yet proximate postglacial lakes in south‐western Alaska that were previously examined for resource polymorphism. Significant differences in pairwise FST were detected among all lakes (range from 0.05 to 0.28, all < 0.02). In one lake (Lower Tazimina Lake), we found evidence for two genetic groups of char and for significant differences in the distribution of microsatellite variability among at least two of the three previously described body size morphotypes (‘large’‐, ‘medium’‐, and ‘small’‐bodied char; maximum FST = 0.09; differences in admixture proportions). We also found a significant association between genetic admixture proportions and gill raker counts among body size morphs (r = ?0.73, < 0.001). Our data represent the first record of genetically distinct sympatric morphs of Arctic char in Alaska and provide further evidence that differences in morphology associated with feeding (gill rakers) and growth trajectories reflect niche diversification and promote genetic divergence in Holarctic populations of Arctic char.  相似文献   
946.
947.
948.
Addition of organic matter (OM) to flooded soils stimulates reductive dissolution of Fe(III) minerals, thereby mobilizing associated phosphate (P). Hence, OM management has the potential to overcome P deficiency. This study assessed if OM applications increases soil or mineral fertilizer P availability to rice under anaerobic (flooded) condition and if that effect is different relative to that in aerobic (nonflooded) soils. Rice was grown in P‐deficient soil treated with combinations of addition of mineral P (0, 26 mg P/kg), OM (0, ~9 g OM/kg as rice straw + cattle manure) and water treatments (flooded vs nonflooded) in a factorial pot experiment. The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; blanket N and K was added in all treatments. Fresh addition of OM promoted reductive dissolution of Fe(III) minerals in flooded soils, whereas no such effect was found when OM had been incubated for 6 months before flooding. Yield and shoot P uptake largely increased with mineral P addition in all soils, whereas OM addition increased yield and P uptake only in flooded soils following fresh OM addition. The combination of mineral P and OM gave the largest yield and P uptake. Addition of OM just prior to soil flooding increased P uptake but was insufficient to overcome P deficiency in the absence of mineral P. Larger applications of OM are unlikely to be more successful in flooded soils due to side effects, such as Fe toxicity.  相似文献   
949.
Soil compaction impacts growing conditions for plants: it increases the mechanical resistance to root growth and modifies the soil pore system and consequently the supply of water and oxygen to the roots. The least limiting water range (LLWR) defines a range of soil water contents within which root growth is minimally limited with regard to water supply, aeration and penetration resistance. The LLWR is a function of soil bulk density (BD), and hence directly affected by soil compaction. In this paper, we present a new model, ‘SoilFlex‐LLWR’, which combines a soil compaction model with the LLWR concept. We simulated the changes in LLWR due to wheeling with a self‐propelled forage harvester on a Swiss clay loam soil (Gleyic Cambisol) using the new SoilFlex‐LLWR model, and compared measurements of the LLWR components as a function of BD with model estimations. SoilFlex‐LLWR allows for predictions of changes in LLWR due to compaction caused by agricultural field traffic and therefore provides a quantitative link between impact of soil loading and soil physical conditions for root growth.  相似文献   
950.
The aim of this paper is to assess the greenhouse gas (GHG) mitigation potential of croplands and grasslands in Great Britain under different management practices. We consider the feasible land management options for grass and cropland using county level land‐use data with estimates of per‐area mitigation potential for individual and total GHGs, to identify the land management options with the greatest cost‐effective mitigation potential. We show that for grasslands, uncertainties still remain on the mitigation potential because of their climatic sensitivity and also their less intensive management. For croplands in Great Britain, the technical mean GHG mitigation potentials for all cropland management practices range from 17 Mt CO2‐eq. per 20 yr to 39 Mt CO2‐eq. per 20 yr. There are significant regional variation in all cases, with the greatest potentials in England, negligible potential in Wales and intermediate potential in Scotland, with country differences largely driven by the areas of cropland and grassland in each country. Practices such as agronomic improvement and nutrient management are the most promising options because of their impact on N2O emissions and also their larger potential at low cost. In terms of annual emissions from agriculture, calculated mitigation potentials are small, where the technical mitigation potential of agronomy and nutrient management strategies are ca. 4.5 and 3.8%, respectively (agricultural emissions account for ca. 9% or 47.7 Mt CO2‐eq., of total Great Britain GHG emissions, Department of Energy and Climate Change, UK). However when compared with the land use, land‐use change and forestry sector (LULUCF) emissions, nutrient management would reduce further emission reductions by approximately half of the 2005 LULUCF sink (i.e. ?1.6 Mt CO2‐eq. per year).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号