首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135632篇
  免费   7787篇
  国内免费   70篇
林业   5576篇
农学   4644篇
基础科学   862篇
  17483篇
综合类   18956篇
农作物   5087篇
水产渔业   7089篇
畜牧兽医   72969篇
园艺   1798篇
植物保护   9025篇
  2020年   1171篇
  2019年   1410篇
  2018年   2229篇
  2017年   2489篇
  2016年   2295篇
  2015年   1999篇
  2014年   2451篇
  2013年   5731篇
  2012年   4350篇
  2011年   5163篇
  2010年   3502篇
  2009年   3547篇
  2008年   5152篇
  2007年   4970篇
  2006年   4641篇
  2005年   4262篇
  2004年   4108篇
  2003年   4174篇
  2002年   3808篇
  2001年   4774篇
  2000年   4641篇
  1999年   3747篇
  1998年   1471篇
  1997年   1452篇
  1996年   1341篇
  1995年   1599篇
  1994年   1327篇
  1993年   1359篇
  1992年   2762篇
  1991年   2901篇
  1990年   2866篇
  1989年   2897篇
  1988年   2610篇
  1987年   2592篇
  1986年   2539篇
  1985年   2400篇
  1984年   1956篇
  1983年   1715篇
  1982年   1154篇
  1979年   1649篇
  1978年   1284篇
  1977年   1135篇
  1976年   1100篇
  1975年   1164篇
  1974年   1357篇
  1973年   1448篇
  1972年   1378篇
  1971年   1195篇
  1970年   1247篇
  1969年   1146篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
 We investigated the effect of nursery inoculation techniques on mycorrhizal colonization and sporulation, growth responses, and nutrient (N and P) uptake to determine the suitable nursey inoculation method of wetland rice (Oryza sativa L.) under high-fertility soil conditions. Seedlings were produced in dry-nursery (DN, watered to 60% of –0.03 MPa) and wet-nursery (WN, 3–5 cm water from the soil surface) conditions with or without arbuscular mycorrhizal fungal (Glomus spp.) inoculation. Soil was γ-ray sterilized before use in this experiment. Mycorrhizal fungal colonization was 56% in DN and 23% in WN plants at 6 weeks of growth. The arbuscular mycorrhizal fungal colonization was significantly higher in plants of DN origin than in WN plants after transplantation to the pots, irrespective of growing stages. Mycorrhizal colonization was significantly decreased to 28% in DN plants and to 25% in WN plants at harvest. The grain yield was significantly influenced by nursery conditions. N and P acquisition of wetland rice plants inoculated with Glomus spp. was significantly greater than that of non-inoculated plants at maturity, especially in those originating from DN conditions. P translocation from shoots to grain was accelerated by mycorrhizas. Received: 6 April 1997  相似文献   
992.
993.
Tetrahymena pyriformis cultures were maintained when transferred serially in solutions containing 105 to 107Klebsiella pneumoniae cells.ml?1, bacterial numbers that were observed to persist in the presence of protozoa. The number of cells of one strain of K. pneumoniae surviving predation in solution was essentially the same in the absence of an alternative prey as in the presence of a second K. pneumoniae strain. Toxins deleterious to protozoa did not appear as the animal consumed the bacteria. T. pyriformis reduced the abundance of Escherichia coli from about 108 to 106.ml?1. but the latter number persisted for 15 days; however, in solutions containing chloramphenicol, the abundance of E. coli fell to 590 cells. ml?1 in 15 days. In solutions containing the antibiotic, T. pyriformis reduced the Rhizobium sp. population from more than 106 to less than 103 cells in 10 days and K. pneumoniae from more than 108.ml?1 to zero in 18 days. An appreciable decline in abundance of these bacteria did not occur in the antibiotic-amended liquid free of protozoa. T. pyriformis did not greatly reduce Rhizobium sp. numbers when both were added to irradiated soil, but the predator caused the bacterial population to decline from 4 × 108 to fewer than 105.g?1 in 16 days in chloramphenicol-treated soil. Colpoda sp. inoculated with Rhizobium sp. into soil sterilized by autoclaving only reduced the prey abundance from 109 to 108.g?1, but the protozoan caused the bacterial population to fall to about 100.g?1 in 15 days in the presence of the antibiotic. The population of Rhizobium sp. added to nonsterile soil dropped from in excess of 108 to 6 × 106.g?1 in 29 days. but it declined to 550. g?1 in the same period when chloramphenicol was also introduced. It is concluded that the ability of these bacteria to maintain themselves in solution and in soil is governed by their capacity to reproduce and replace the cells consumed by predation.  相似文献   
994.
The application of phosphorus (P)-based fertiliser to agricultural soils can result in a skewed vertical distribution of P down the soil profile, since the element tends to accumulate at the soil surface. Such accumulation can have detrimental effects on the environment, as the erosion of surface soil can facilitate the transfer of large quantities of P out of the field into water bodies. Earthworm and plant communities are intricately linked to vertical nutrient distributions in soil, with both communities either facilitating or negating the incorporation of nutrients into the soil matrix. This study aimed to investigate the effect of earthworm presence, plant community structure and fertiliser type to affect the distribution of nutrients in experimental mesocosms; with particular emphasis on the vertical distribution of P. Mesocosms were designed to simulate a soil which has a high P concentration at the surface compared to further down the soil profile. It was hypothesised that the presence of earthworms would facilitate the incorporation of P into the soil matrix and the presence of a more botanically diversity community would assimilate a greater quantity of soil nutrients. After 1 year, mesocosms were deconstructed into five depth ranges, and the distribution of nutrients were modelled and analysed. Results indicated that the presence of earthworms did redistribute soil nutrients from the surface into the matrix beneath. This redistribution was apparent from a reduction in nutrient concentrations in the 0–1 cm depth range. The presence of a more botanically diverse community not only assimilated greater soil nutrient concentrations, but also promoted a less even vertical distribution of soil nutrients, demonstrating the importance of soil biota and plant diversity in the redistribution of soil nutrients.  相似文献   
995.
Aluminum toxicity and boron deficiency are the major factors that limit plant growth and development in acid soils and in B-deficient soils. Root growth inhibition is an early symptom of AI toxicity and B deficiency. Effects of AI and B supply and their interaction on the growth of wheat (Triticum aestivum L.) seedlings were investigated using hydroponics. Fifteen wheat cultivars commonly grown in Bangladesh were used and found to differ considerably in their tolerance to AI toxicity and B deficiency. The relative root length of all the wheat cultivars at 50 µM AI (pH 4.5) ranged from 27 to 71% relative to the control (0 µM AI). Among the cultivars, Inia66 and Kalyansona were found to be the most Al-tolerant and sensitive cultivars, respectively, based on the data of relative root length, malate exudation and AI content of roots. Malate was detected in all the cultivars in the presence of 100 µM AI (pH 4.3). Inia66 exuded a 6-fold larger amount of malate and the AI content of roots was 4 times lower than that in Kalyansona. The vigorous seedling growth was observed at 40 µM B among the series of B treatments. Considerable cultivar differences in response to 40 µM B were observed among the 15 cultivars. Kalyansona was considered to be the most sensitive and Kheri the most tolerant to B deficiency. The interaction effects of B ( 40 and 200 µM) and AI (50 µM) on seedling growth were also examined in Inia66 and Kalyansona. Root growth was inhibited in the presence of Al but B supply especially at 200 µM B in the Kalyansona cultivar caused a slight improvement.  相似文献   
996.
Abstract

Iron (Fe) chlorosis is a major nutritional constraint to groundnut (Arachis hypogaea L.) productivity in many parts of the world. On‐farm research was conducted at a Fe‐chlorotic site to evaluate the performance of three genotypes (TMV‐2, ICGS‐11, and ICGV‐86031), three fertilizer practices [no fertilizer control, fanners practice (125: 200: 0 kg NPK ha?1), recommended practice (20: 50: 30 kg NPK ha?1)], and two Fe treatments (non‐sprayed control and foliar FeSO4 sprays) for their effect on Fe‐chlorosis and haulm and pod yields. These treatments were tested in a strip‐split plot design with four replicates. Results revealed that TMV‐2 and ICGS‐11 were susceptible to Fe‐chlorosis and produced significantly smaller haulm and pod yield, whereas, ICGV‐8603 1 was tolerant to Fe‐chlorosis. Farmer's fertilizer practice had the highest incidence of Fe‐chlorosis. Extractable Fe and chlorophyll content in the fresh leaves were the best indices of Fe‐status and were significantly (P<0.01) correlated with visual chlorosis ratings. Foliar application of FeSO4 (0.5 w/ v) was effective in correcting Fe‐chlorosis and increased pod yield by about 30 to 40% in susceptible genotypes. These results suggests that use of tolerant genotypes such as ICGV‐86031 or foliar application of FeSO4 in susceptible genotypes such as TMV‐2 and ICGS‐11 in combination with recommended fertilizer levels is an effective management package for alleviating Fe‐chlorosis in groundnut.  相似文献   
997.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   
998.
Many tropical forage grasses and legumes grow well in acid soils, adapting to excess aluminum (Al) and phosphorus (P) starvation stresses by using mechanisms that are still unclear. To determine these mechanisms, responses to Al toxicity and P starvation in three tropical forages were studied: two grasses, Brachiaria hybrid cv. ‘Mulato’ (B. ruziziensis clone 44-06 × B. brizantha cv. ‘Marandú’) and Andropogon gayanus, and one legume, Arachis pintoi. The tropical grasses tolerated high levels of Al toxicity and P starvation, with the Brachiaria hybrid maintaining very low levels of Al concentration in shoots. 27Al Nuclear Magnetic Resonance spectroscopy (NMR) analysis revealed that, in the Brachiaria hybrid, Al makes complexes with some ligands such as organic-acid anions in the root symplast. The forages probably adapted to P starvation through high P-use efficiency. These experiments provide the first direct evidence we know of that organic acid anions within root tissue help detoxify Al in non-accumulator species such as the Brachiaria hybrid.  相似文献   
999.
ABSTRACT

The interaction between soil salinity and infection caused by Verticillium dahliae was studied in pistachio (Pistacia vera) in a greenhouse experiment. Treatments consisted of 0, 1400, 2800, and 4200 mg sodium chloride (NaCl) kg? 1 soil and three rootstocks (Sarakhs, Badami, and Qazvini cultivars). They were gradually exposed to salinity stress before and/or after root inoculation with a water suspension of 107 conidia/mL of a pistachio isolate of V. dahliae. Salt stress significantly increased rootstock shoot and root colonization by V. dahliae. All rootstocks were susceptible to V. dahliae, but symptoms of the disease appeared earlier in Sarakhs, a salt sensitive cultivar. Moreover, salinity and V. dahliae interaction increased the concentrations of sodium (Na), potassium (K) and chloride (Cl), but decreased the K/Na ratio in all rootstocks. Shoot and root tissues of inoculated Sarakhs and Qazvini (a salt tolerant) contained the highest and the lowest concentrations of Na, K,and Cl, respectively. In salinity treatments, shoot and root dry weight of all rootstocks decreased as compared with controls. Sarakhs showed smaller shoot and root dry weight than Qazvini and Badami. Also, increasing the NaCl level increased accumulation of Na, K, and Cl in shoot and root of the rootstocks. Sarakhs showed higher concentrations of ions in the shoot and root. Based on shoot and root dry weights and ion accumulation, Sarakhs and Qazvini were susceptible and tolerant to salinity, respectively.  相似文献   
1000.
Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号