首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   42篇
  国内免费   2篇
林业   87篇
农学   15篇
基础科学   4篇
  304篇
综合类   153篇
农作物   26篇
水产渔业   45篇
畜牧兽医   194篇
园艺   25篇
植物保护   64篇
  2023年   6篇
  2022年   11篇
  2021年   18篇
  2020年   19篇
  2019年   20篇
  2018年   24篇
  2017年   31篇
  2016年   25篇
  2015年   19篇
  2014年   26篇
  2013年   36篇
  2012年   74篇
  2011年   69篇
  2010年   44篇
  2009年   42篇
  2008年   71篇
  2007年   74篇
  2006年   70篇
  2005年   44篇
  2004年   41篇
  2003年   40篇
  2002年   31篇
  2001年   11篇
  2000年   12篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   11篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1966年   1篇
排序方式: 共有917条查询结果,搜索用时 0 毫秒
81.
Large sized biopores (diameter >2 mm) in the subsoil can be created by tap roots, which leave voids after their decay, or by the burrowing activity of anecic earthworms which may benefit from the temporary lack in tillage in perennial cropping systems. However, the interactions between root growth and earthworm activity in the process of biopore formation during perennial ley cropping are not well understood. The aim of this field study was to quantify the development of the abundance of the anecic earthworm Lumbricus terrestris and the biopore density during the cultivation of lucerne (Medicago sativa L.), chicory (Cichorium intybus L.) and tall fescue (Festuca arundinacea Schreb.) grown for either one, two or three years. An increased abundance of L. terrestris was already recorded after two years of continuous ley when compared with one year cultivation. The ley crop species had only minor influence on the abundance of L. terrestris. Biopore densities of both diameter classes under study (2–5 mm and >5 mm) were not significantly affected by the duration of ley cropping. In contrast, biopore densities were influenced by ley crop species. More biopores of diameter class 2–5 mm were recorded after chicory than after fescue. Lucerne cropping resulted in intermediate biopore density. Additionally, in an incubation experiment under field conditions, we quantified whether L. terrestris preferentially created new biopores or colonized abandoned, previously existing ones. After three weeks of incubation, one third of the adult individuals incubated in the experimental area created new biopores at 0.4 m soil depth. A similar percentage of individuals colonized previously existing biopores, partially widening the lumen of smaller sized biopores. The remaining individuals remained in the topsoil. Sub-adult individuals rarely formed new pores. Half of the introduced sub-adults remained in the topsoil. We conclude that in crop rotations new biopores can be generated during perennial ley cropping by taproot systems of ley crops, but that a two to three- year period without tillage is not sufficient for populations of anecic earthworms to make a marked contribution to biopore density in the subsoil. The relevance of anecic earthworms for altering physical and chemical properties of biopores during ley cropping still needs further investigation.  相似文献   
82.
Aspects of phytoremediation of organic pollutants   总被引:1,自引:0,他引:1  
Phytoremediation is a quite novel technique to clean polluted soils using plants. In theory, phytoremediation methods are cheap, are accepted by the public and, compared to physical or chemical approaches, are ecologically advantageous. Until today, however, there are only a few examples of successful applications. One reason is that the processes involved are complex, and a full clean up may require many years. Plants affect the water balance of a site, they change redox potential and pH, and stimulate microbial activity of the soil. These indirect influences may accelerate degradation in the root zone or reduce leaching of compounds to groundwater. Compounds taken up into plants may be metabolised, accumulated, or volatilised into air. Based on these processes, several phytoremediation methods have been developed: Phytoextraction, rhizofiltra-tion, phytostabilisation, rhizo and phytodegradation, pump and tree, land farming, phytovolatilisation, hydraulic control and more. Already in use are plants (and here willow, poplar and grass) for the degradation of petroleum products, aromatic hydrocarbons (BTEX), chlorinated solvents, explosives and cyanides. However, phytotoxicity and pollutant mass balances were rarely documented. Often, the success of the projects was not controlled, and only estimates can be made about the applicability and the potential of phytoremediation. This lack of experience about possibilities and limitations seems to be a hindrance for a broader use of these techniques.  相似文献   
83.
Quantitative estimation of the mineralogical composition of silt fractions of soils based on both, chemical analysis and application of Karl-Fischer-titration. I. Method This paper describes a method for calculating the mineralogical composition of the silt fractions of soils. The chemical analysis and the temperature dependence of water release are used for determining micas and feldspars, each in three components in a relatively short procedure. The release of water was measured by Karl-Fischer-titration at controlled temperatures. At temperatures above 550°C the water release of the particle size fractions correlates with their content of micas. The quantity of micas can be obtained from the amount of released water and the results of the chemical analysis. The influence of kaolinite, amphibole and the fluoride content on the calculation is described. By considering the potassium content of the mica fraction results of the chemical analysis are used to quantify feldspars.  相似文献   
84.
Partition coefficients K P of nonylphenol (NP) in soil were determined for 193 soil samples which differed widely in content of soil organic carbon (SOC), hydrogen activity, clay content, and in the content of dissolved organic carbon (DOC). By means of multiple linear regression analysis (MLR), pedotransfer functions were derived to predict partition coefficients from soil data. SOC and pH affected the sorption, though the latter was in a range significantly below the pKa of NP. Quality of soil organic matter presumably plays an important but yet not quantified role in sorption of NP. For soil samples with SOC values less than 3 g kg?1, model prediction became uncertain with this linear approach. We suggest that using only SOC and pH data results in good prediction of NP sorption in soils with SOC higher than 3 g kg?1. Considering the varying validity of the linear model for different ranges of the most sensitive parameter SOC, a more flexible, nonlinear approach was tested. The application of an artificial neuronal network (ANN) to predict sorption of NP in soils showed a sigmoidal relation between K P and SOC. The nonlinear ANN approach provided good results compared to the MLR approach and represents an alternative tool for prediction of NP partitioning coefficients.  相似文献   
85.
Aflatoxins are a group of very carcinogenic mycotoxins that can be found on a wide range of food commodities including nuts, cereals, and spices. In this study, the first LC-MS/MS stable isotope dilution assay (SIDA) for the determination of aflatoxins in foods was developed. The development of this method was enabled by easily accessible isotope-labeled (deuterated) aflatoxins B2 and G2, which were synthesized by catalytic deuteration of aflatoxin B1 and G1, purified, and well-characterized by NMR and MS. All four aflatoxins of interest (B1, B2, G1, and G2) were quantified in food samples by using these two labeled internal standards. The response factors (RF) of the linear calibrations were revealed to be matrix independent for labeled aflatoxin B2/aflatoxin B2 and labeled aflatoxin G2/aflatoxin G2. For labeled aflatoxin B 2/aflatoxin B 1 and labeled aflatoxin B2/aflatoxin G1 matrix-matched calibration was performed for the model matrices almonds and wheat flour, showing significant differences of the RFs. Limits of detection (LOD) were determined by applying a statistical approach in the presence of the two model matrices, yielding 0.31 microg/kg (aflatoxin B1), 0.09 microg/kg (aflatoxin B2), 0.38 microg/kg (aflatoxin G1), and 0.32 microg/kg (aflatoxin G2) for almonds (similar LODs were obtained for wheat flour). Recovery rates were between 90 and 105% for all analytes. Coefficients of variation (CV) of 12% (aflatoxin B1), 3.6% (aflatoxin B2), 14% (aflatoxin G1), and 4.8% (aflatoxin G2) were obtained from interassay studies. For further validation, a NIST standard reference food sample was analyzed for aflatoxins B1 and B2. The method was successfully applied to determine trace levels of aflatoxins in diverse food matrices such as peanuts, nuts, grains, and spices. Aflatoxin contents in these samples ranged from about 0.5 to 6 microg/kg.  相似文献   
86.
We investigated microbial biomass, fungal biomass and microbial community structure at three altitudes (1000, 2000 and 3000 m) and in two soil layers [L/F layer (Layer I) and underlying H/Ah layer (Layer II)] of tropical mountain rain forests in southern Ecuador. Basal respiration, microbial biomass and concentration of ergosterol generally declined from Layer I to Layer II and peaked at 2000 m. Compared to temperate forest ecosystems microbial biomass and ergosterol concentrations were generally low. Patterns in phospholipid fatty acids indicated that the composition of microbial communities markedly changed from Layer I to Layer II. These differences between layers decreased with increasing altitude. The concentration of the arbuscular mycorrhizal fungal marker PLFA 16:1ω5c decreased with altitude in Layer I but increased in Layer II. The fungal-to-bacterial ratio increased with altitude and was higher in Layer I than in Layer II. Presumably, low microbial biomass in soils of tropical forest ecosystems is due to high temperature associated with high respiration but also low litter quality, with the latter declining with altitude. These conclusions are supported by the fact that at higher altitude the microbial community changed from a bacterial-dominated to a fungal-dominated system. CCA showed that microbial biomass correlated closely with density of a number of putatively bacterial feeding testate amoeba species including Corythion dubium Taranek, 1871, Euglypha cristata Leidy, 1879, Trigonopyxis arcula Penard, 1912, Tracheleuglypha dentata Deflandre, 1928 and Trinema lineare Penard, 1890. Ergosterol concentrations, but not the PLFA 18:2ω6c, strongly correlated with the putatively fungal feeding species Phryganella acropodia (Hertwig, Lesser, 1874) Hopkinson, 1909. Generally, parallel to microbial biomass and ergosterol concentrations the density of testate amoebae peaked at 2000 m. However, compared to microbial parameters changes in testate amoebae communities between two layers were less pronounced. The data suggest that density and community structure of testate amoebae are driven by the availability of food resources (bacteria and fungi) which at high altitude decrease with increasing moisture and decreasing pH.  相似文献   
87.
When conservation tillage is practised in agriculture, plant residues remain on the soil surface for soil protection purposes. These residues should be widely decomposed within the following vegetation period as microbial plant pathogens surviving on plant litter may endanger the currently cultivated crop. Important soil-borne fungal pathogens that preferably infect small grain cereals belong to the genus Fusarium. These pathogens produce the mycotoxin deoxynivalenol (DON), a cytotoxic agent, in infected cereal organs. This toxin frequently occurs in cereal residues like straw. So far it is unclear if DON degradation is affected by members of the soil food web within decomposing processes in the soil system. For this purpose, a microcosm study was conducted under controlled laboratory conditions to investigate the degradation activity of the earthworm species Lumbricus terrestris when exposed to Fusarium-infected wheat straw being contaminated with DON.Highly Fusarium-infected and DON-contaminated straw seemed to be more attractive to L. terrestris because it was incorporated faster into the soil compared with straw infected and contaminated at low levels. This is supported by a greater body weight gain (exposure time 5 weeks) and smaller body weight loss (exposure time 11 weeks) of L. terrestris, respectively, when highly contaminated straw was offered for different time periods.Furthermore, L. terrestris takes part in the efficient degradation of both Fusarium biomass and DON occurring in straw in close interaction with soil microorganisms. Consequently, earthworm activity contributes to the elimination of potentially infectious plant material from the soil surface.  相似文献   
88.
The combined influence of a strongly interacting cosolvent (NaCl) and a weakly interacting cosolvent (sucrose) on the heat-induced gelation of bovine serum albumin (BSA) was studied. The dynamic shear rheology of 4 wt % BSA solutions containing 0 or 20 wt % sucrose and 0-200 mM NaCl was monitored as they were heated from 30 to 90 degrees C at 1.5 degrees C min(-)(1), held at 90 degrees C for 120 min, and then cooled back to 30 degrees C at -1.5 degrees C min(-)(1). The turbidity of the same solutions was monitored as they were heated from 30 to 95 degrees C at 1.5 degrees C min(-)(1) or held isothermally at 90 degrees C for 10 min. NaCl had a similar effect on BSA solutions that contained 0 or 20 wt % sucrose, with the gelation temperature decreasing and the final gel strength increasing with increasing salt concentration and the greatest changes occurring between 25 and 100 mM NaCl. Nevertheless, the presence of sucrose did lead to an increase in the gelation temperature and final gel strength and a decrease in the final gel turbidity. The impact of NaCl on gel characteristics was attributed primarily to its ability to screen electrostatic interactions between charged protein surfaces, whereas the impact of sucrose was attributed mainly to its ability to increase protein thermal stability and strengthen the attractive forces between proteins through a preferential interaction mechanism.  相似文献   
89.
The spatial extent of metal contamination caused by small-scale ore veins is increased by periglacial solifluction. Our objectives were (1) to examine the spatial distribution of Pb in cover beds that migrated over Pb ore veins, (2) to calculate the transport distance of ore-derived Pb, and (3) to determine controls on the transport distance.We examined six transects (320-775 m long) in the Rhenish Slate Mountains in West Germany. The transects included four west-exposed and two east-exposed slopes with inclinations between 2-20°. All transects were forest-covered and located at 280-450 m above sea level. Soils were Dystric Cambisols and Stagnic Luvisols. Samples of 120 B horizons developed in the sediments of the last ice age (Wuerm) were analyzed for total Pb concentrations and partly also 206Pb/207Pb ratios. The Pb concentrations ranged from 20 to 135 mg kg 1. The spatial Pb distribution suggested that 14 (out of 18) sampling points showing local Pb concentration maxima contained Pb from ore veins upslope. With a two-end-member-mixing model using 206Pb/207Pb isotope ratios of the ore (206Pb/207Pb ratio: 1.1828) as one end member and of the native substrate (a mixture of slate and loess; 206Pb/207Pb ratio: 1.2254 ± 0.0072) as the other we confirmed that the 14 Pb peaks originated from the ore, because they contained 76-100% of ore-derived Pb. By the use of a geographic information system, the transport distance of this Pb was determined to range between 30 and 110 m. Silt concentrations (Pearson r = − 0.69) and the relief curvature (Cramér's V = 0.60) were major controls on the transport distance. Our study demonstrates that Pb ore veins can increase native soil Pb concentrations in soil derived from the periglacial drift of the last ice age (Wuerm) up to a distance of more than 100 m.  相似文献   
90.
Grasses and legumes are grown together worldwide to improve total herbage yield and the quality of forage, however, the causes of population oscillations of grasses and legumes are poorly understood. Especially in grasslands, earthworms are among the most important detritivore animals functioning as ecosystem engineers, playing a key role in nutrient cycling and affecting plant nutrition and growth. The objectives of the present greenhouse experiment were to quantify the effects of earthworms on grass–legume competition in model grassland systems at two harvesting dates – simulating the widespread biannual mowing regime in Central European grasslands.The presence of earthworms increased the productivity of grasses and legumes after 6 weeks but only that of grasses after another 10 weeks. In mixed treatments, the presence of grasses and earthworms decreased legume shoot biomass, the amount of nitrogen (N) in shoot tissue and the number of legume flowerheads while the presence of legumes and earthworms increased the amount of N in grass shoots and the infestation of grasses with aphids. Analyses of 15N/14N ratios indicate that, compared to legumes, grasses more efficiently exploit soil mineral N and benefit from legume presence through reduced “intra-functional group” competition. In contrast to previous experiments, we found no evidence for N transfer from legumes to grasses. However, legume presence improved total herbage and N yield.Earthworms likely modulate the competition between grasses and legumes by increasing soil N uptake by plants and thereby increasing the competitive strength of grasses. Earthworms function as essential driving agents of grass–legume associations by (I) increasing grass yield, (II) increasing the amount of N in grass hay, (III) increasing the infestation rate of grasses with aphids, and (IV) potentially reducing the attractiveness of grass–legume associations to pollinators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号