首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
林业   3篇
农学   2篇
基础科学   1篇
  53篇
综合类   1篇
农作物   5篇
园艺   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   23篇
  2012年   1篇
  2011年   8篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
51.
Respiration of CO2 from soils (Rs) is a major component of the carbon cycle of ecosystems, but understanding is still poor of both the relative contributions of different respiratory sources to Rs, and the environmental factors that drive diurnal variations in Rs. We measured total and litter-free Rs at half-hourly intervals over full 24 h periods, and thereafter twice a month for 10 months in a tropical montane cloud forest (TMCF) in Peru. Total Rs declined by about 61% during the night as a result of variations in respiration rate in the litter, which were partly correlated with the soil surface air temperature. Most of the diurnal variation of Rs in this TMCF appears to be driven by respiration in the litter layer, which contributed 37% to the total soil CO2 efflux. Total Rs rates at this particular site would have been overestimated by 60% if derived from daytime measurements that had not been corrected for diurnal variations in Rs.  相似文献   
52.
Permanent raised beds are being promoted as a resource conservation technology for rice–wheat systems in Indo-Gangetic plains (IGP) to improve the water productivity of rice and wheat in addition to other benefits, as furrow irrigation can be more efficient than flood irrigation. However, several studies carried out in the NW IGP have shown rice grain yields to decrease with the increasing age of the beds. The present study was conducted on a deep alluvial loam (Ustochrept) in a farmer's field at Phillaur, Punjab, India, to identify possible reasons for the declining grain yield of rice on the permanent raised beds (37.5 cm wide alternating with 30 cm wide furrows 15 cm deep) in comparison to fresh raised beds. The beds were formed with a bed planter drawn by a 35-hp 4-wheel tractor, which was also used to direct drill wheat on the permanent beds each year, and to reshape the beds prior to each rice crop. This paper reports a study of rice root distribution and mass at the end of the vegetative stage, and soil bulk density after harvest, for transplanted rice on permanent beds (4th rice crop, 8th crop) in comparison with transplanted rice on fresh beds (1st crop).Rice grain yield declined linearly with increasing age of the permanent beds. It decreased by 19% in 2004, 45% in 2005 and 59% in 2006 from 4.64 t ha−1 in 2003. In situ exposure of root profiles on permanent and fresh beds revealed that the horizontal spread of roots on permanent beds (6 cm from the base of the plant at 18 cm depth and 12 cm at 27 cm depth) was much less than on fresh beds (12 cm at 18 cm depth and 18 cm at 27 cm depth). The root mass density in at 0–15 cm the middle of the fresh beds was 59% higher than on the permanent beds. Bulk density was significantly higher under the shoulder and side of the permanent beds to the depth of sampling (0–15 cm) than under the fresh beds at the same positions across the furrow. The decline in performance of rice on beds as the beds aged was at least partly due to compaction of the permanent beds by the tractor tyres, which had width similar to that of the top of the furrow. This hindered the spread of the roots particularly towards the beds.  相似文献   
53.
In view of their potential benefits, reduced or no tillage (NT) systems are being advocated worldwide. Concerns about impairment of some soil conditions, however, cast doubt on their unqualified acceptance. We evaluated the effects of 6 years of tillage and residue management on bulk density, penetration resistance, aggregation and infiltration rate of a Black Chernozem at Innisfail (loam, 65 g kg−1 organic matter, Udic Boroll) and a Gray Luvisol at Rimbey (loam, 31 g kg−1 organic matter, Boralf) cropped to monoculture spring barley (Hordeum vulgare L.) in a cool temperate climate in Alberta, Canada. Tillage systems were no tillage and tillage with rototilling (T), and two residue levels were straw removed (−S) and straw retained (+S). Bulk density (BD) of the 0–7.5 and 7.5–15 cm depths was significantly greater under NT (1.13–1.58 Mg m−3) than under T (0.99–1.41 Mg m−3) in both soils, irrespective of residue management. In both soils, penetration resistance (PR) was greater under NT than under T to 15 cm depth. Residue retention significantly reduced PR of the 0–10 cm soil in NT, but not in T. In the 0–5 cm depth of the Black Chernozem, the >2 mm fraction of dry aggregates was highest under NT + S (72%), and lowest under T − S (50%). The wind-erodible fraction (dry aggregates <1 mm size) was smallest (18%) under NT + S and largest (39%) under T − S. Soil aggregation benefited more from NT than from residue retention. Proportion of wind-erodible aggregates was generally greater in the Gray Luvisol than in the Black Chernozem. In the Black Chernozem, steady-state infiltration rate (IR) was significantly lower (33%) under NT than under T. Residue retention improved IR in both NT and T. In the Gray Luvisol, IR was not significantly affected by tillage and residue management. Despite firmer soil, NT and residue retention are recommended to improve aggregation in the cool temperate region of Western Canada.  相似文献   
54.
55.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   
56.
Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Sustainable management practices, such as tillage and residue management, can influence structure and function of the soil microbiota, with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil biological indices, we only have a limited understanding of their temporal changes in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. We evaluated the effects of combinations of tillage, crop residue management and green manuring on soil biological indicators after 5 years of the practising rice–wheat system (RWS). Four main plot treatments in rice included the following: (a) PTRW0, puddled transplanted rice with no wheat straw retained; (b) PTRW25, puddled transplanted rice with 25% anchored wheat stubbles retained; (c) PTRW0 + Sesbania aculeate L. green manure (GM); and (d) PTRW25+GM, puddled transplanted rice with 25% anchored wheat stubbles retained+ GM. There were three subplot treatments in the subsequent wheat crop: (a) CTWR0, conventional tillage wheat with rice residue removed; (b) ZTWR0, zero tillage wheat with rice residue removed; and (c) ZTWR100, ZTW with 100% rice residue retained as mulch. The PTRW25+GM treatment, followed by ZTWR100, significantly increased soil microbial biomass carbon, basal soil respiration, microbial quotient and mineralization quotient measured during wheat-growing season. These biological indicators were higher at vigorous vegetative wheat growth stage than at flowering stage and decreased at maturity. The principal component analysis of the assayed variables showed that all the variables significantly contributed to the variability in parameters examined and were more related to maximum tillering stage of wheat growth than to maturity or at sowing of wheat. Three highly effective biological indicators were microbial biomass carbon, microbial quotient and mineralization quotient, which responded significantly to changes in tillage and residue management practices in the RWS. We conclude that crop residues and green manure have significant to improve soil biochemical processes by improving soil organic carbon and soil biological indicators in rice–wheat cropping system.  相似文献   
57.
A field experiment was conducted on a Typic Cryoboroll (Site 1) and a Typic Cryoboralf (Site 2) in north-central Alberta, Canada, to determine the influence of simulated erosion (artificial topsoil removal) on loss in yield of hard-red spring wheat (Triticum aestivum L. cv. ‘Roblin'), and to determine to which extent fertilizers N and P will restore the lost crop productivity of two artificially-eroded soils. There were three depths of topsoil removal (0, 10, and 20 cm) as main plot treatments, and a factorial combination of four levels of N (0, 50, 100, and 150 kg N ha−1) and three levels of P (0, 9, and 18 kg P ha−1) as sub-plot treatments. Wheat yields at both sites were markedly reduced by increasing depth of topsoil removal. The erosion effects were more pronounced at Site 2 where average yield on the 20 cm cut decreased to less than half of that obtained under non-eroded conditions. At both sites, additions of fertilizer N and P to eroded soil increased wheat yield, but the yields did not match those obtained in non-eroded soil under the same fertilizer treatment. Plants growing on eroded soil responded differently to application of fertilizers N and P, not only in terms of yield but also in N and P concentration and uptake. The implication of these findings is that fertilization programs for fields with varying degree of erosion would require optimization of rates so as to restore yield and, at the same time, minimize nutrient losses (e.g., N leaching) and improve soil tilth.  相似文献   
58.
Seedrow-placed urea minimizes soil disturbance in reduced tillage systems, but it generally decreases seedling emergence (or stand density) at nitrogen (N) rates adequate for optimum crop yield. Two three-year field experiments were conducted on canola (Brassica napus L.) and spring wheat (Triticum turgidum L.) at Melfort Research Farm, Saskatchewan, Canada, to determine the influence of N rate (40, 80 and 120 kg N ha?1), N source [untreated urea (urea), polymer-coated urea (ESN), and urea treated with Dicyandiamide (DCD) and N-(n-butyl) thiophosphoric triamide (NBPT or AgrotainTM) (SuperU) in 2007, or NBPT only (AgrotainU) in 2008 and 2009], and placement (side-banded N and seedrow-placed N, using knives to create 2 cm wide band), plus a zero-N control, on seedling emergence, seed and straw yield, protein concentration (PC) in seed, and N uptake in seed and straw. For both crops, side-banded N had no detrimental effect on seedling emergence compared to the zero-N control for all rates and sources. Seedrow-placed ESN had little or no effect on seedling emergence of wheat or canola. Conversely, seedrow-placed urea, SuperU or AgrotainU reduced seedling emergence for wheat at the 80 and 120 kg N ha?1 rates and reduced canola seedling emergence substantially at all rates, but particularly at the 80 and 120 kg N ha?1. Seed yield and N uptake were generally greater with ESN than urea and also SuperU or AgrotainU, when the fertilizers were seedrow-placed at high N rates. The findings suggest the effectiveness of ESN in providing greater seedrow-placed N application options for producers.  相似文献   
59.
Three field experiments were conducted on Gray Luvisol (Typic Cryoboralf) soils in northeastern Saskatchewan to compare the effects of alfalfa (Medicago sativa Leyss) stand termination with tillage and herbicides at different times on mineral nitrogen (N) (ammonium-N and nitrate-N) and moisture content of soil in spring (experiments 1 and 2), soil moisture, volunteer alfalfa and dandelion control, plant density, seed yield, protein concentration and N uptake for wheat (Triticum aestivum L.), barley (Hordeum vulgare L), canola (Brassica rapa L.), and pea (Pisum sativum L.) crops (experiment 3). Termination treatments included combinations of times (in mid-June after cut 1, in mid-August after cut 2 and in mid-May during spring) and methods [tillage alone, herbicides alone (glyphosate + 2,4-D amine and also clopyralid + 2,4-D ester in experiment 3) and these herbicides + tillage]. Tillage alone significantly increased spring soil nitrate-N levels over herbicides alone or herbicides + tillage. Termination after cut 1 had the highest levels of soil nitrate-N. There was little effect of time and method of termination on soil ammonium-N and moisture content in spring. Herbicides + tillage generally provided better control of both volunteer alfalfa and dandelion in the four crops than tillage or herbicides alone. In general, alfalfa termination with herbicides alone significantly reduced plant density, seed yield, and N uptake of all crops and protein concentration of cereals only due to effects on levels of soil nitrate-N, dandelion control, and crop injury by clopyralid or 2,4-D residues in soil. Plant density, seed yield, N uptake and protein concentration of crops tended to decline with delay in termination time. The results of this study support the use of some tillage in alfalfa stand termination in helping to control volunteer alfalfa and dandelion and optimize annual crop yields and quality.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号