Bluetongue virus (BTV), a member of Orbivirus genus (family Reoviridae), is a non-contagious infection of domestic and wild ruminants. The current study was designed to detect various serotypes of BTV in small ruminants of Khyber Pakhtunkhwa (KPK) province of Pakistan, along with their effects on hemato-biochemical parameters. A total of 408 serum samples in four districts (Mansehra, Abbottabad, Swabi, and Kohat) of KPK from small ruminants were screened based on competitive ELISA (cELISA). A total of 204 (50%) samples were found positive for BTV group–specific antibodies. The seropositive samples were processed for the detection of BTV serotypes through real-time polymerase chain reaction (qPCR). Out of 204 cELISA-positive samples, 60 (29.41%) were found positive through qPCR. Three serotypes [6, 8, 9] were detected from Mansehra District and two from Kohat [2, 8] and Abbottabad [6, 8], while only one from Swabi [8]. The serotype “8” was found consistently in all the four study districts. A significant (p?<?0.05) increase in the level of blood urea nitrogen (BUN) and alkaline phosphatase (ALP) was recorded in goats, whereas aspartate aminotransferase (AST) in sheep infected with BTV, compared to healthy animals. The hematological parameters showed significantly (p?<?0.05) raised total leucocyte count (TLC) in both sheep and goats, whereas only hematocrit (HCT) value was increased significantly (p?<?0.05) in infected sheep. This is the first report on serotyping of BTV among small ruminants in Pakistan.
Veterinary Research Communications - Avian polyomavirus (APV) infection, also called as budgerigar fledgling disease (BFD) causes various health problems in many psittacine species which may cause... 相似文献
Two experiments were done using a two-by-two design to determine the effects of season and superstimulatory protocol on embryo production in wood bison. In Experiment 1 (in vivo-derived embryos), ovarian superstimulation was induced in female bison during the ovulatory and anovulatory seasons with either two or three doses of FSH given every-other-day (FSH × 2 vs. FSH × 3, respectively). Bison were given hCG to induce ovulation, inseminated 12 and 24 hr after hCG, and embryos were collected 8 days after hCG (n = 10 bison/group). In Experiment 2 (in vitro embryo production), ovarian superstimulation was induced in female bison during the ovulatory and anovulatory seasons with two doses of FSH, and in vivo maturation of the cumulus–oocyte complexes (COC) was induced with hCG at either 48 or 72 hr after the last dose of FSH. COC were collected 34 hr after hCG, and expanded COC were used for in vitro fertilization and culture. In Experiment 1, the number of follicles ≥9 mm, the proportion of follicles that ovulated, the number of CL, and the total number of ova/embryos collected did not differ between seasons or treatment groups, but the number of transferable embryos was greater (p < .05) in the ovulatory season. In Experiment 2, no differences were detected between seasons or treatment groups for any end point. The number of transferable embryos produced per bison was greatest (p < .05) using in vitro fertilization and was unaffected by season (1.5 ± 0.2 and 1.1 ± 0.3 during anovulatory and ovulatory seasons, respectively), in contrast to in vivo embryo production which was affected by season (0.1 ± 0.01 and 0.7 ± 0.2 during anovulatory and ovulatory seasons, respectively). Results demonstrate that transferable embryos can be produced throughout the year in wood bison by both in vivo and in vitro techniques, but the efficiency of embryo production of in vivo-derived embryos is significantly lower during the anovulatory season. 相似文献
Nudix hydrolases are widely distributed across all classes of organisms and provide the potential capacity to hydrolyze a wide range of organic pyrophosphates. Although Nudix hydrolases are involved in plant detoxification processes in response to abiotic and biotic stresses, the biological functions of Nudix hydrolases remain largely unclear in grapevine.In the present study, a total of 25 putative grapevine Nudix hydrolases(VvNUDXs) were identified by bioinformatics analysis and classified int... 相似文献
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity. 相似文献
This research study evaluated the effect of different additives on the bait consumption by Indian crested porcupine, a serious forest and agricultural pest, under field conditions. Different additives (saccharin, common salt, bone meal, fish meal, peanut butter, egg yolk, egg shell powder, yeast powder, mineral oil and coconut oil) at 2 and 5% each were tested for their relative preference, using groundnut–maize (1:1) as basic bait. All the additives were tested under a no‐choice test pattern. For control tests, no additive was mixed with the basic bait. Saccharin at 5% concentration significantly enhanced the consumption of bait over the basic bait, while 2% saccharin supplemented bait resulted in a non‐significant bait consumption. All other additives did not enhance the consumption of the bait material; rather, these worked as repellents. However, the repellency was lowest with the common salt, followed by egg yolk, egg shell powder, bone meal, peanut butter, mineral oil, fish meal and yeast powder, while coconut remained the most repellent compound. The present study suggested that groundnut–maize (1:1) supplemented with 5% saccharin was the preferred bait combination, and can be used with different rodenticides for the management of Indian crested porcupine. 相似文献
Sustainability of traditionally cultivated rice in the rice-wheat cropping zone (RWCZ) of Pakistan is dwindling due to the high cost of production, declining water resources and escalating labour availability. Thus, farmers and researchers are compelled to find promising alternatives to traditional transplanted rice (TPR). A field study was conducted in Punjab, Pakistan, in 2017 and 2018 to explore the trade-offs between water saving and paddy yield, water productivity and economics of two aromatic rice varieties under dry direct seeded rice (DDSR) and TPR. The experiment was comprised of three irrigation regimes on the basis of soil moisture tension (SMT) viz., continuous flooded (>−10 kPa SMT), alternate wetting and drying (AWD) (−20 kPa SMT) and aerobic rice (−40 kPa SMT), maintained under TPR and DDSR systems. Two aromatic rice verities: Basmati-515 and Chenab Basmati-2016 were used during both years of study. In both years, DDSR produced higher yields (13–18%) and reduced the total water inputs (8–12%) in comparison to TPR. In comparison to traditional continuous flooded (CF), AWD under DDSR reduced total water input by 27–29% and improved the leaf area index (LAI), tillering, yield (7–9%), and water productivity (44–50%). The performance of AWD with regard to water savings and increased productivity was much higher in DDSR system as compared to AWD in TPR system. Cultivation of DDSR with aerobic irrigation improved water savings (49–55%) and water productivity (22–30%) at the expense of paddy yield reduction (36–39%) and spikelet sterility. With regard to variety, the highest paddy yield (6.6 and 6.7 t ha−1) was recorded in DDSR using Chenab Basmati-2016 under AWD irrigation threshold that attributed to high tiller density and LAI. The economic analysis showed DDSR as more beneficial rice establishment method than TPR with a high benefit-cost ratio (BCR) when the crop was irrigated with AWD irrigation threshold. Our results highlighted that with the use of short duration varieties, DDSR cultivation in conjunction with AWD irrigation can be more beneficial for higher productivity and crop yield. 相似文献
Twenty-eight male, weaned Chinese Holstein calves((156.8±33.4) kg) were used to investigate the effects of dietary forage to concentrate ratio(F:C) and forage length on nutrient digestibility, plasma metabolites, ruminal fermentation, and fecal microflora. Animals were randomly allocated to four treatments in a 2×2 factorial arrangement: whole-length forage(WL) with low F:C(50:50); WL with high F:C(65:35); short-length forage(SL) with high F:C(65:35); and SL with low F:C(50:50). Chinese wildrye was used as the only forage source in this trial. The grass in the SL treatments was chopped using a chaff cutter to achieve small particle size(~50% particles 19 mm). Dry matter intake(DMI) and organic matter(OM) intake was increased by increasing both F:C(P0.01) and forage length(FL)(P0.05), while acid detergent fiber(ADF) and neutral detergent fiber(NDF) intakes were only increased by increasing the F:C(P0.01). The digestibility of NDF was increased as the FL increased(P0.01), and it was also affected by interaction between F:C and FL(P0.05). Cholesterol(CHO)(P0.01), leptin(LP)(P0.05), and growth hormone(GH)(P0.01) concentrations in plasma were increased as dietary F:C increased. A significant increase in plasma triglyceride(TG)(P0.01), insulin(INS)(P0.05), and GH(P0.01) levels was observed with decreasing dietary FL. Ruminal p H values of calves fed with low F:C diets were significantly lower than those in high F:C treatment(P0.05). Increasing the F:C enhanced ruminal acetic acid(P0.05) and acetic acid/propionic acid(P0.01). Fecal Lactobacillus content was significantly higher, while Escherichia coli and Salmonella contents were significantly lower in WL and high F:C groups(P0.05). Lower fecal scores(higher diarrhea rate) were observed in calves fed with SL hay compared to WL hay(P0.05). Denatured gradient gel electrophoresis(DGGE) bands and richness index(S) were significantly affected by the interaction between F:C and FL(P0.05), under high F:C, band numbers and richness index from WL group were higher than that from SL group(P0.05), whereas there were no differences between WL andSL groups under low F:C(P0.05). Microflora similarity was 50–73% among the different treatments. It is concluded that the WL with high F:C(65:35) diet is suitable for weaned calves. 相似文献