首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7279篇
  免费   427篇
  国内免费   16篇
林业   436篇
农学   350篇
基础科学   34篇
  1517篇
综合类   764篇
农作物   662篇
水产渔业   573篇
畜牧兽医   2793篇
园艺   121篇
植物保护   472篇
  2023年   35篇
  2022年   90篇
  2021年   154篇
  2020年   157篇
  2019年   163篇
  2018年   201篇
  2017年   223篇
  2016年   257篇
  2015年   215篇
  2014年   283篇
  2013年   411篇
  2012年   472篇
  2011年   554篇
  2010年   327篇
  2009年   323篇
  2008年   458篇
  2007年   424篇
  2006年   370篇
  2005年   338篇
  2004年   321篇
  2003年   272篇
  2002年   304篇
  2001年   178篇
  2000年   138篇
  1999年   93篇
  1998年   49篇
  1997年   32篇
  1996年   35篇
  1995年   48篇
  1994年   24篇
  1993年   33篇
  1992年   36篇
  1991年   35篇
  1990年   40篇
  1989年   42篇
  1988年   38篇
  1987年   48篇
  1986年   20篇
  1985年   45篇
  1984年   30篇
  1983年   33篇
  1981年   25篇
  1980年   21篇
  1978年   24篇
  1977年   24篇
  1976年   32篇
  1974年   23篇
  1973年   22篇
  1972年   22篇
  1971年   19篇
排序方式: 共有7722条查询结果,搜索用时 15 毫秒
131.
Nanocrytalline cellulose (NCC) was isolated using cellulose extracted from two different precursor materials: Eucalyptus globulus and rice straw. The two ground precursor materials were autoclaved with a 10 % NaOH solution at 120 °C for 3 h. The alkali-treated precursor materials were bleached using sodium chlorite/acetic acid and sodium hypochlorite. The bleached precursor materials were acid-hydrolyzed in 65 % (w/w) sulfuric acid at 45 °C for 30-120 min. The changes in the chemical composition of the two precursor materials were studied before and after bleaching by Fourier transform infrared spectroscopy according to the NREL report and TAPPI standards. Hydrolyzates were characterized by X-ray diffractometry, thermogravimetric analysis, Zeta-potential analysis, and transmission electron microscopy. The results revealed that the physical properties of NCC were strongly dependent on the acid-hydrolysis time.  相似文献   
132.
In recent decades, tremendous research has focused on the production of nanoscale fibers using synthetic polymers, with the goal of fabricating nanofibrous scaffolds for wound healing. However, the hydrophobicity of such polymers typically hinders attachment and proliferation of the cells. In this study, we combined poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) to fabricate blended nanofibers for wound healing by electrospinning. PLGA and SIS were dissolved in 1,1,1,3,3,3-hexafluoro isopropanol to produce different weight ratios of PLGA/SIS-blended nanofibrous membranes (NFM). Physicochemical characterization of the electrospun NFM was performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, water contact angle analysis, degradation test and tensile testing. The PLGA/SIS-blended NFM showed improved hydrophilicity and tensile strength. Better infiltration, attachment and proliferation of rat granulation fibroblasts of PLGA/SIS-blended NFMs compared to PLGA NFMs were identified by morphological differences determined by SEM and a water-soluble tetrazolium salt assay kit. Based on our results, the PLGA/SIS blended NFMs were found to be suitable for use as a potential material for wound dressing.  相似文献   
133.
Fusarium spp. cause severe damage in many agricultural crops, including sugar beet, with Fusarium oxysporum historically being considered as the most damaging of all species. Sugar beet needs to be protected from this class of soil-borne pathogens in order to ensure an optimal sugar yield in the field. Genetic control of the disease is crucial in managing these pathogens. Identification of single nucleotide polymorphism (SNP) markers linked to resistance can be a powerful tool for the introgression of valuable genes needed to develop Fusarium-resistant varieties. A candidate gene approach was carried out to identify SNP markers linked to putative Fusarium resistance sources in sugar beet. Five resistant analogue genes (RGAs) were screened by means of high resolution melting (HRM) analysis in a set of sugar beet lines, considered as resistant and susceptible to Fusarium oxysporum. HRM polymorphisms were observed in 80% of amplicons. Two HRM polymorphisms were significantly associated with Fusarium resistance (P < 0.05). The amplicons that showed association were sequenced and two SNPs were identified. The association was further validated on 96 susceptible and 96 resistant plants using competitive allele-specific PCR (KASPar) technology. The selected SNPs could be used for marker-assisted breeding of Fusarium resistance in sugar beet.  相似文献   
134.
The allopolyploidization event that created cultivated oilseed rape Brassica napus L, followed by intense breeding, reduced its genetic diversity. Resynthesized (RS) B. napus L. obtained by interspecific hybridization between genotypes of B. rapa L. and B. oleracea L. can be a valuable source for broadening genetic diversity in cultivated oilseed rape. In this study, we determined the extent of DNA polymorphism among natural accessions of oilseed rape, resynthesized B. napus, their parental species and double-low quality semi-RS lines carrying the Rfo gene. Using 10 selected primer combinations, 522 polymorphic AFLP markers were scored in the complete set of 100 Brassica sp. To detect relationships between these genotypes, a cluster analysis was performed using the Jaccard’s distance. Resynthesized allopolyploids clustered directly between their diploid parents. Cultivated accessions of oilseed rape created a compact group away from resynthesized allopolyploids as well as semi-RS lines. The natural oilseed rape group, which consists of 49 cultivars and breeding lines of oilseed rape, is characterized by lower genetic diversity than the group of 33 accessions of resynthesized oilseed rape, and the analysis showed that the double-low quality semi-RS lines represent a specific genetic variation of B. napus. The de novo resynthesized B. napus lines and the semi-RS lines of double-low quality generated from them, provide a significant opportunity for enrichment the gene pool of oilseed rape.  相似文献   
135.
A set of putative marker genes to study plant defense responses against Polyphagotarsonemus latus, a key pest in the production of Rhododendron simsii hybrids, was selected and validated. Genes belonged to the biosynthetic pathway of phytohormones jasmonic acid (JA) (RsLOX, RsAOS, RsAOC, RsOPR3 and RsJMT) and salicylic acid (SA) (RsPAL and RsICS). Furthermore, RsPPO, a putative marker gene for oxidative stress response was successfully cloned from R. simsii. A CTAB-based extraction protocol was optimized to assure excellent RNA quality for subsequent RT-qPCR analysis. The RT-qPCR protocol was extensively tested and RsRG7 and RsRG14 were selected as reference genes from a geNorm pilot study. Validation of the marker genes was done after application with elicitors [methyl jasmonate (MeJA), coronatine, β-aminobutyric acid and acibenzolar-Smethyl] or wounding. Both 100 μM MeJA and 0.1 μM coronatine had a significant effect on the expression of all marker genes. Foliar application of MeJA on the shoots resulted in a significantly earlier response when compared to root application and subsequent sampling of the shoots. Expression patterns after MeJA treatment were generally the same in six R. simsii genotypes: ‘Nordlicht’, ‘Elien’, ‘Aiko Pink’, ‘Michelle Marie’, ‘Mevrouw Gerard Kint’ and ‘Sachsenstern’. Wounding resulted in the same expression patterns as MeJA treatment except for RsJMT. None of the genotypes showed a significant induction of the latter gene 6 h upon wounding. Findings of these experiments indicated that the tolerant genotype ‘Elien’ has low basal expression levels of RsPPO. This might be the first step towards the breeding of mite-tolerant genotypes.  相似文献   
136.
Salinity is one of the major abiotic stresses that severely effects rice production throughout the world. Previously, there have not been many studies which focused on studying diversity among rice germplasm based on specific physiological traits for salt tolerance. Our diversity study was based on physiological traits such as Na+ concentration, K+ concentration, K+/Na+ ratio, osmotic potential, and biomass which are major components determining salt tolerance. This study has systematically analyzed phenotypic data of 191 germplasms in two different salt concentrations apart from the control. The current study identified salt tolerant germplasms based on their response to a single physiological trait as well as a combination of different physiological traits. Some of the germplasm identified outperformed known salt tolerant cultivar Pokkali. This study identifies correlation among various physiological traits. The salt tolerant germplasms can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.  相似文献   
137.
Determining effective measures to alleviate the impact of climate change on crops under various regional environments is one of the most urgent issues facing agriculture. In this study, geographic regions of South Korea for future-adjusted barley cultivation were outlined and the impact of climate change on barley production in the next 100 years was evaluated under two greenhouse gas concentration trajectory scenarios: the representative concentration pathway (RCP) 4.5 and RCP 8.5. To achieve our intended study goals, a geospatial crop simulation modeling (GCSM) scheme was formulated using CERES-barley model of Decision Support System for Agricultural Technology (DSSAT) crop model package version 4.6 to simulate grid-based geospatial crop yields. Two experiments were carried out at an open field to obtain model coefficients for the nation and at temperature gradient field chambers to evaluate the performance of the CERES-barley model under elevated temperature conditions. Suitable cultivation regions for three different types of barley (naked, hooded, and malting) under changing climate were projected to expand to the northern regions under both RCP 8.5 and RCP 4.5. However, they were projected to expand more rapidly under RCP 8.5 than those under RCP 4.5. Projected yields of four barley varieties were increased with a slow phase as year progressed under RCP 4.5 scenario. However, they were rapidly increased under RCP 8.5 scenario. It appears that geospatial variation in barley yield under changing climate can be effectively outlined. Therefore, GCSM system might be useful for determining impacts of climate change on geospatial variations of crops, potentially providing means to impede food insecurity.  相似文献   
138.
Gluten protein determines the processing quality of both durum wheat and bread wheat. The glutenin subunits compositions and associated quality traits of 20 Ethiopian durum wheat varieties were systematically analyzed using SDS-PAGE and Payne numbers. A total of 16 glutenin patterns were identified. At the Glu-A1 locus, all varieties scored the null allele. The predominant glutenin alleles at the Glu-B1 locus were Glu-B1b (7+8) and Glu-B1e (20). In Glu-3, the most abundant glutenin subunits were Glu-A3a and Glu-B3c. Based on the Payne scores, the varieties Yerer, Ginchi, Candate, and Foka were identified to have allelic composition suitable for pasta making. The cluster analysis using agglomerative hierarchical clustering (AHC) method classified the varieties into four similarity classes. Based on the findings of this experiment, suggestions were made for allelic composition improvement through introgression of superior alleles from known Glu-1 and Glu-3 sources.  相似文献   
139.
Journal of Soils and Sediments - Carbon capture and storage (CCS) has been frequently discussed as a strategy for meeting CO2 emission reduction and its targets. However, some critical issues have...  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号