首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   30篇
林业   65篇
农学   17篇
基础科学   1篇
  50篇
综合类   64篇
农作物   8篇
水产渔业   15篇
畜牧兽医   306篇
园艺   2篇
植物保护   49篇
  2023年   4篇
  2021年   7篇
  2020年   15篇
  2019年   9篇
  2018年   11篇
  2017年   5篇
  2016年   10篇
  2015年   11篇
  2014年   14篇
  2013年   9篇
  2012年   24篇
  2011年   26篇
  2010年   15篇
  2009年   18篇
  2008年   24篇
  2007年   18篇
  2006年   24篇
  2005年   27篇
  2004年   18篇
  2003年   17篇
  2002年   9篇
  2001年   9篇
  2000年   10篇
  1999年   12篇
  1997年   5篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   12篇
  1991年   19篇
  1990年   13篇
  1988年   11篇
  1987年   4篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1980年   4篇
  1979年   8篇
  1974年   9篇
  1973年   8篇
  1972年   6篇
  1971年   8篇
  1970年   4篇
  1969年   6篇
  1967年   7篇
  1966年   4篇
  1942年   3篇
排序方式: 共有577条查询结果,搜索用时 15 毫秒
101.
In a long-term series of on-farm tillage trials (10 loessial sites in southern and eastern Germany; annual mouldboard ploughing 0.25–0.3 m deep, mulching with a rigid-tine cultivator 0.1–0.15 m deep, direct drilling with no tillage except seedbed preparation for sugar beet solely) sugar beet yield was significantly decreased by direct drilling compared to ploughing. This study was conducted to (i) show that the lower plant density caused by mulching and direct drilling contributes to yield decrease but explains effects just partially, and (ii) determine the relation between soil structural properties and sugar beet yield. In 2003–2005 plant density experiments (53,000, 65,000 and 82,000 plants ha?1) were introduced to tillage plots on five selected environments. Yield and soil structural properties of four layers representing 0–0.43 m soil depth were determined.White sugar yield (WSY) significantly declined with direct drilling compared to ploughing treatment, whereas mulching treatment diminished WSY less pronounced. Moreover, decreasing plant density significantly lowered WSY. No interactions between tillage and plant density occurred, revealing that both factors additively affected WSY.Decreasing tillage depth increased penetration resistance (PR) and dry bulk density (DBD), and diminished air filled pore volume (AFPV) in the topsoil down to 0.27 m depth. Several soil structural parameters were closely correlated with each other as well as WSY. Variation of single parameters explained up to 60% of WSY variance attributed to tillage. Combining DBD from 0.03 to 0.07 m depth, average PR from 0.03 to 0.27 m and AFPV from 0.03 to 0.18 m soil depth explained 77% of the tillage effect. Nevertheless, multi-collinearity of soil physical parameters allowed no clear conclusions on the cause-and-effect mechanisms.Conclusively, lowered plant density and soil structure degradation due to reduced tillage may independently decrease sugar beet yield. When grown on loessial soils this crop requires mechanical loosening down to 0.15–0.20 m depth to produce high yields.  相似文献   
102.
103.

Objective

Myxomatous mitral valve disease (MMVD) induces progressive left atrial (LA) enlargement. The LA modulates left ventricular filling and performance through its reservoir, conduit, and contractile function. Assessment of LA size and function may provide valuable information on the level of cardiac compensation. Left atrial function in dogs with naturally occurring MMVD remains largely unexplored. The objective of this study was to evaluate LA volume and function in dogs with naturally occurring MMVD.

Animals

This prospective study included 205 client-owned dogs of different breeds, 114 healthy dogs, and 91 dogs with MMVD of different disease severities.

Methods

Using two-dimensional echocardiography, the biplane area-length method was applied to assess LA volume and calculate volumetric indices of LA reservoir, conduit, and contractile function.

Results

Left atrial volume and LA stroke volume increased, whereas LA reservoir and contractile function decreased with increasing disease severity. A maximal LA volume <2.25mL/kg was the optimal cut off identified for excluding congestive heart failure in dogs with chronic MMVD with a sensitivity of 96% and a specificity of 100%. An active LA emptying fraction <24% and/or a LA expansion index <126% were suggestive of congestive heart failure in dogs with chronic MMVD with a sensitivity of 77% and a specificity of 89% and a sensitivity of 82% and a specificity of 82%, respectively.

Conclusion

Dogs with MMVD appear to have larger LA volumes with poorer LA function. Deteriorating LA function, characterized by a decreasing reservoir and active contractile function, was evident in dogs with MMVD with increasing disease severity.  相似文献   
104.
105.
The current study was initiated to evaluate the efficacy of physical methods (hot water, aerated steam, electron treatment) and agents of natural origin (resistance inducers, plant derived products, micro-organisms) as seed treatments of carrots for control of Alternaria dauci and A. radicina. Control of both Alternaria species by seed treatment with the resistance inducers was generally poor. Results were also not satisfactory with most of the formulated commercial micro-organism preparations. Based on the average of five field trials, one of these, BA 2552 (Pseudomonas chlororaphis), provided a low but significant increase in plant stand. Among the experimental micro-organisms, the best results were obtained with Pseudomonas sp. strain MF 416 and Clonostachys rosea strain IK726. A similar level of efficacy was provided by seed treatment with an emulsion (1%) of thyme oil in water. Good and consistent control was generally achieved with the physical methods aerated steam, hot water and electron treatment. Aerated steam treatment was, apart from the thiram-containing chemical standard, the best single treatment, and its performance may at least partially be due to extensive pre-testing, resulting in dosages optimally adapted to the respective seed lot. In some of the experiments the effect of the hot water treatment, which was tested at a fixed, not specifically adapted dosage, was significantly improved when combined with a Pseudomonas sp. MF 416 or C. rosea IK726 treatment. The results are discussed in relation to the outcome of experiments in which the same seed treatment methods and agents were tested in other seed-borne vegetable pathosystems.  相似文献   
106.
Knowledge is scarce about the composition of soils on Bellona and other Pacific atolls. Such knowledge is important as it is closely related to sustainable land use of these special soils formed on carbonatic/phosphatic materials. Therefore, the micromorphological, chemical and mineralogical composition of samples from genetic horizons in three dominant Bellonese soils (Malanga, Kenge Ungi and Kenge Toaha) and underlying rock (Tanahu) were investigated. Tanahu mainly consists of dolomite, but this mineral is absent in the three soils, which are dominated by phosphate-containing minerals. The Malanga soil is strongly dominated by Ca and P with minor amounts of Al, F and Fe present in fluorapatite, hydroxyapatite and crandallite. In contrast, Al, Fe and P dominate in the Kenge Ungi and Kenge Toaha soils in accordance with a mineralogy consisting of crandallite together with aluminum oxides (gibbsite/boehmite) and iron oxides, mainly goethite with minor contents of hematite. The observed carbonate for phosphate substitution in the apatites and crandallite is important as it indicates an increased phosphate availability in the soils. All three soil samples contain ≤ 1% Si and very little K and Mg. Total contents of essential microelements are considered adequate, but the rather high contents of Sr and U, especially in the Kenge Ungi soil may be problematic. Although the composition of the soils suggests substantial fertility and resilience, the lack of K-containing weatherable minerals (silicate minerals) is in line with a very low K (and low Mg) content and explains why fertilization may be needed to sustain future cultivation of these special soils. Due to a possible low bioavailability of Fe, Mn and maybe other micronutrients at the circumneutral pH of these carbonatic/phosphatic soils as well as the rather high contents of Sr and U, it may be recommended to test element availability using appropriate chemical soil tests supplemented by plant experiments to ensure safe and sustainable (optimal) soil use. However, according to the local farmers, the Malanga, Kenge Toaha and Kenge Ungi soils are considered well suited for production of the preferred crops.  相似文献   
107.
Previous research has found that conventional agricultural systems adversely affect arbuscular mycorrhizal (AM) fungi. However, there is little information on how more ecologically sustainable agricultural practices such as tree-based intercropping (TBI) influence AM fungal communities. In this study, we investigated whether TBI promotes a more abundant and diverse AM fungal community compared to conventional monocropping (CM). Abundance was estimated by measuring spore abundance and hyphal length in soil, and AM fungal colonization of corn (Zea mays) roots. Overall, AM fungal abundance was similar in both systems as corn roots from the CM and TBI systems were heavily colonized (>50%) by AM fungi throughout the growing season. Additionally, soil samples from the CM and TBI systems contained similar spore densities and hyphal length. Molecular analysis of the AM fungal community was assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis of large subunit rRNA genes amplified from roots in the two cropping systems. A total of fourteen AM fungal phylotypes that belonged to the Glomeraceae were found in the two cropping systems. The TBI system had a higher AM fungal richness and contained several taxa not found in the CM system. Molecular analysis of AM fungal communities also revealed significant temporal and compositional differences between the TBI and CM systems. Within the TBI system, tree species differentially influenced the AM fungal community composition in the alley cropping regions. Future research should focus on determining whether compositional differences among AM fungal communities in CM and TBI systems have a functional effect on crop growth and productivity.  相似文献   
108.
Endothelin-1 (ET-1), a physiological as well as an inflammatory mediator, causes contraction of airway smooth muscles by binding to endothelin-A (ETA) and endothelin-B (ETB) receptors. We investigated the interaction between endothelin receptors on contractions and oxidative stress of bronchial rings of clinically healthy horses. Rings for response studies were set in tissue chambers containing oxygenated Tyrode’s solution. Concentration-response relationships were determined for ET-1 on control rings, rings incubated with ETA antagonist (BQ123), rings incubated with ETB antagonists (IRL 1038 and BQ788), and rings incubated with all antagonists combined. For oxidative stress studies, rings were incubated for 30 minutes separately with ET-1, ETA antagonist + ET-1, ETB antagonists + ET-1, and all three antagonists + ET-1. The control rings were not treated with any agents. Electron paramagnetic resonance (EPR) method was used to measure total reactive oxygen species (ROS), superoxide, and peroxynitrite. Results showed that ET-1 caused dose-dependent contractions which were increased by ETA blockade and decreased by ETB blockade. Combined blockade significantly inhibited the response to ET-1. Regarding the oxidative stress, ET-1 and its antagonists significantly reduced the total ROS. Superoxide production was significantly decreased by ETA antagonist and completely abolished when ETA and ETB antagonists were combined. Peroxynitrite production was not changed significantly. The study suggested that an interaction between ET receptors exists in the expression of contractile responses and oxidative stress. ET-1 attenuated oxidative stress by decreasing total ROS. ETA receptors may be primarily responsible for superoxide production. It appears that ET-1 does not affect peroxynitrite production in normal equine tissues.  相似文献   
109.
The transmissibility of an H7N1 Low Pathogenic Avian Influenza (LPAI) virus isolated from a turkey flock during the large epidemic in Italy in 1999, was experimentally studied in chickens. Four group transmission experiments were performed. Infection and transmission were monitored by means of virus isolation on swab samples and antibody detection in serum samples. From the results of these groups, we estimated the mean infectious period at 7.7 (6.7-8.7) days, the transmission rate parameter at 0.49 (0.30-0.75) infections per infectious chicken per day and the basic reproduction ratio at 3.8 (1.3-6.3). These estimates can be used for the development of surveillance and control programmes of LPAI in poultry.  相似文献   
110.
Most organic carbon (C) in soils eventually turns into CO2 after passing through microbial metabolic pathways, while providing cells with energy and biosynthetic precursors. Therefore, detailed insight into these metabolic processes may help elucidate mechanisms of soil C cycling processes. Here, we describe a modeling approach to quantify the C flux through metabolic pathways by adding 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracers to intact soil microbial communities. The model calculates, assuming steady-state conditions and glucose as the only substrate, the reaction rates through glycolysis, Krebs cycle, pentose phosphate pathway, anaplerotic activity through pyruvate carboxylase, and various biosynthesis reactions. The model assumes a known and constant microbial proportional precursor demand, estimated from literature data. The model is parameterized with experimentally determined ratios of 13CO2 production from pyruvate and glucose isotopologue pairs. Model sensitivity analysis shows that metabolic flux patterns are especially responsive to changes in experimentally determined 13CO2 ratios from pyruvate and glucose. Calculated fluxes are far less sensitive to assumptions concerning microbial chemical and community composition. The calculated metabolic flux pattern for a young volcanic soil indicates significant pentose phosphate pathway activity in excess of pentose precursor demand and significant anaplerotic activity. These C flux patterns can be used to calculate C use efficiency, energy production and consumption for growth and maintenance purposes, substrate consumption, nitrogen demand, oxygen consumption, and microbial C isotope composition. The metabolic labeling and modeling methods may improve our ability to study the biochemistry and ecophysiology of intact and undisturbed soil microbial communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号