首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   21篇
林业   8篇
农学   11篇
  13篇
综合类   56篇
农作物   8篇
水产渔业   16篇
畜牧兽医   152篇
园艺   13篇
植物保护   19篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   11篇
  2016年   9篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1983年   5篇
  1982年   4篇
  1979年   4篇
  1977年   7篇
  1976年   4篇
  1975年   7篇
  1974年   10篇
  1973年   9篇
  1972年   5篇
  1970年   6篇
  1969年   9篇
  1967年   3篇
  1966年   5篇
  1963年   4篇
  1924年   2篇
  1911年   4篇
  1908年   2篇
排序方式: 共有296条查询结果,搜索用时 796 毫秒
221.
222.
223.
224.

Context

The landscape heterogeneity hypothesis states that increased heterogeneity in agricultural landscapes will promote biodiversity. However, this hypothesis does not detail which components of landscape heterogeneity (compositional or configurational) most affect biodiversity and how these compare to the effects of surrounding agricultural land-use.

Objectives

Our objectives were to: (1) assess the influence of the components of structural landscape heterogeneity on taxonomic diversity; and (2) compare the effects of landscape heterogeneity to those of different types of agricultural land-use in the same landscape across different taxonomic groups.

Methods

We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an agricultural mosaic of north-eastern Swaziland. We tested how bird, dung beetle, ant and meso-carnivore richness and diversity responded to compositional and configurational heterogeneity and agricultural land-use across five different spatial scales.

Results

Compositional heterogeneity best explained species richness in each taxonomic group. Bird and ant richness were both positively correlated with compositional heterogeneity, whilst dung beetle richness was negatively correlated. Commercial agriculture positively influenced bird species richness and ant diversity, but had a negative influence on dung beetle richness. There was no effect of either component of heterogeneity on the combined taxonomic diversity or richness at any spatial scale.

Conclusions

Our results suggest that increasing landscape compositional heterogeneity and limiting the negative effects of intensive commercial agriculture will foster diversity across a greater number of taxonomic groups in agricultural mosaics. This will require the implementation of different strategies across landscapes to balance the contrasting influences of compositional heterogeneity and land-use. Strategies that couple large patches of core habitat across broader scales with landscape structural heterogeneity at finer scales could best benefit biodiversity.
  相似文献   
225.
Scientific research has always relied on communication for gathering and providing access to data; for exchanging information; for holding discussions, meetings, and seminars; for collaborating with widely dispersed researchers; and for disseminating results. The pace and complexity of modern research, especially collaborations of researchers in different institutions, has dramatically increased scientists' communications needs. Scientists now need immediate access to data and information, to colleagues and collaborators, and to advanced computing and information services. Furthermore, to be really useful, communication facilities must be integrated with the scientist's normal day-to-day working environment. Scientists depend on computing and communications tools and are handicapped without them.  相似文献   
226.
A dog with an acquired, progressive oropharyngeal dysphagia also had a myopathy-neuropathy. It was clinically similar to criocopharyngeal achalasia, and could easily have been confused with it, even with fluoroscopic evaluation. Conservative medical therapy was instituted since cricopharyngeal myotomy could have caused severe aspiration and death. Resolution was apparently due to anti-inflammatory therapy.  相似文献   
227.
This study evaluated whether the FieldScout CM 1000 NDVI and Yara N–Tester models can produce accurate and reliable estimates of nitrogen (N), buffer-soluble nitrogen (BSN), buffer-insoluble nitrogen (BISN), non-protein nitrogen (NPN) and in vitro ruminal nitrogen degradability after 3, 12 and 24?h incubation (ND3, ND12 and ND24) in three tropical grasses: Brachiaria hybrid, Megathyrsus maximus and Paspalum atratum. Correlation between the Yara N-Tester and N, BISN and in vitro ruminal N degradability of the Brachiaria hybrid and M. maximus were high (r 0.67–0.83). The Yara N-Tester accounted for 81% and 86% (p 0.000) of N variability in the Brachiaria hybrid and M. maximus, respectively. The Yara N-Tester prediction models explained 72% and 70% (p 0.000) BISN variability in the Brachiaria hybrid and M. maximus, respectively. In vitro ND24 of the Brachiaria hybrid (R?2 0.75) and M. maximus (R?2 0.75) was also best predicted with the Yara N-Tester. Model validation showed generally low (0.90) concordance correlation coefficients except for Yara N-Tester N and ND24 in M. maximus. Random error was the main source of error. We conclude that the accuracy of the Yara N-Tester prediction models was superior to that of the FieldScout CM 1000 NDVI models, and that the Yara N-Tester can produce accurate and reliable estimates of Brachiaria hybrid and M. maximus N and M. maximus ND24.  相似文献   
228.
229.
Field studies were conducted in 2010, 2011, and 2012 at a commercial blueberry farm near Burgaw, NC to determine weed control and crop tolerance to S-metolachlor and flumioxazin alone or mixed with hexazinone. Herbicides were applied pre-budbreak and postharvest. Pre-budbreak applications consisted of hexazinone at 1.1 or 2.2 kg ai ha?1, S-metolachlor at 1.4 or 2.8 kg ai ha–1, and flumioxazin at 215 g ai ha–1 alone and tank mixes of hexazinone or flumioxazin plus S-metolachlor. Additional treatments consisted of flumioxazin (215 g ha–1), flumioxazin plus S-metolachlor (1.4 and 2.8 kg ha–1), or hexazinone (1.1 kg ha–1) plus S-metolachlor (1.4 and 2.8 kg ha–1) applied pre-budbreak and followed by (fb) a postharvest application of flumioxazin (215 g ha–1). Herbicide programs containing flumioxazin resulted in greater Maryland meadowbeauty control (73%) 5 to 6 weeks after treatment (WAT) than herbicide programs containing hexazinone at 1.1 or 2.2 kg ha–1 (37% and 39%, respectively). Needleleaf rosette grass control remained ≥94% for all herbicide programs through 2 WAT. Hexazinone at 1.1 kg ha–1 provided greater needleleaf rosette grass control (87%) than flumioxazin (71%) 5 to 6 WAT. Meadowbeauty and needleleaf rosette grass control by all herbicide programs was poor (≤39% and ≤57%, respectively) 16 to 18 WAT. Two weeks after post-harvest applications, herbicide programs receiving a post-harvest flumioxazin application had greater meadowbeauty and needleleaf rosette grass control (78% and 84%, respectively) than those programs without a post-harvest flumioxazin application (43% and 71%, respectively).  相似文献   
230.
Bottom‐contact fishing gears are globally the most widespread anthropogenic sources of direct disturbance to the seabed and associated biota. Managing these fishing disturbances requires quantification of gear impacts on biota and the rate of recovery following disturbance. We undertook a systematic review and meta‐analysis of 122 experiments on the effects‐of‐bottom fishing to quantify the removal of benthos in the path of the fishing gear and to estimate rates of recovery following disturbance. A gear pass reduced benthic invertebrate abundance by 26% and species richness by 19%. The effect was strongly gear‐specific, with gears that penetrate deeper into the sediment having a significantly larger impact than those that penetrate less. Sediment composition (% mud and presence of biogenic habitat) and the history of fishing disturbance prior to an experimental fishing event were also important predictors of depletion, with communities in areas that were not previously fished, predominantly muddy or biogenic habitats being more strongly affected by fishing. Sessile and low mobility biota with longer life‐spans such as sponges, soft corals and bivalves took much longer to recover after fishing (>3 year) than mobile biota with shorter life‐spans such as polychaetes and malacostracans (<1 year). This meta‐analysis provides insights into the dynamics of recovery. Our estimates of depletion along with estimates of recovery rates and large‐scale, high‐resolution maps of fishing frequency and habitat will support more rigorous assessment of the environmental impacts of bottom‐contact gears, thus supporting better informed choices in trade‐offs between environmental impacts and fish production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号