首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   13篇
  国内免费   2篇
林业   23篇
农学   26篇
基础科学   4篇
  82篇
综合类   25篇
农作物   33篇
水产渔业   4篇
畜牧兽医   65篇
园艺   8篇
植物保护   25篇
  2023年   2篇
  2022年   9篇
  2021年   11篇
  2020年   13篇
  2019年   13篇
  2018年   23篇
  2017年   20篇
  2016年   13篇
  2015年   9篇
  2014年   19篇
  2013年   34篇
  2012年   18篇
  2011年   15篇
  2010年   20篇
  2009年   11篇
  2008年   9篇
  2007年   10篇
  2006年   12篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有295条查询结果,搜索用时 31 毫秒
291.
Wheat (Triticum aestivum L.) productivity is generally affected by water limitation and inadequate nitrogen supply especially under semi-arid environment. The current study was conducted to determine whether the crop yield and irrigation water use efficiency (IWUE) could be manipulated through alteration of nitrogen and irrigation application. To meet the desired objectives, a two-year field study was carried out in 2013–2014 and 2014–2015, in a split-split plot arrangement with three factors i) irrigation in main plots, ii) nitrogen in sub-plots, and iii) twenty genotypes in sub-sub plots on a sandy loam soil. The analysis of variance revealed that the wheat performance was affected by genotypes and alteration of irrigation and nitrogen application with respect to IWUE and final grain yield. IWUE under water stress conditions was observed 56% higher than normal irrigated. Much higher values of IWUE under water stress indicated that the existing optimum water requirements of the crop needs to be revaluated. The regression model indicated that addition of nitrogen and irrigation patterns along with morphological traits cannot explain variation in yield related traits more than 65% under semi-arid conditions. Therefore, for better crop yields in semi-arid environment, more physiological parameters should be considered in evaluation of yield.  相似文献   
292.
Hybrid maize farmers have to face diverse kinds of climate, biological, price and financial risks. Farmers' risk perceptions and risk attitudes are essential elements influencing farm operations and management decisions. However, this important issue has been overlooked in the contemporary studies and therefore there is a dearth of literature on this important issue. The present research is therefore, an attempt to fill this gap. This study aims to quantify hybrid maize farmers' perceptions of disastrous risks, their attitudes towards risk and to explore the impacts of various farm and farm household factors on farmers' risk attitudes and risk perceptions. The present study is conducted in four hybrid maize growing districts of Punjab Province, Pakistan, using cross-sectional data of 400 hybrid maize farmers. Risk matrix and equally likely certainty equivalent (ELCE) method are used to rank farmers' perceptions of four catastrophic risk sources including climate, biological, price and financial risks and to investigate farmers' risk aversion attitudes, respectively. Furthermore, probit regression is used to analyze the determinants affecting farmers' risk attitudes and risk perceptions. The results of the study showed that majority of farmers are risk averse in nature and perceive price, biological and climate to be potential sources of risks to their farm enterprise. In addition, analysis divulges that distance from farm to main market, off-farm income, location dummies for Sahiwal and Okara, age, maize farming experience, access to extension agent, significantly (either negatively or positively) influence farmers' risk attitudes and risk perceptions. The study delivers valuable insights for farmers, agricultural insurance sector, extension services researchers and agricultural policy makers about the local understanding of risks to hybrid maize crop in developing countries, like Pakistan, and have implications for research on farmers' adaptation to exposed risks.  相似文献   
293.
Acacia hybrids offer a great potential for paper industry in Southeast Asia due to their fast growth and ability to grow on abandoned or marginal lands. Breeding Acacia hybrids with desirable traits can be achieved through marker assisted selection (MAS) breeding. To develop a MAS program requires development of linkage maps and QTL analysis. Two mapping populations were developed through interspecific hybridization for linkage mapping and QTL analysis. All seeds per pod were cultured initially to improve hybrid yield as quality and density of linkage mapping is affected by the size of the mapping population. Progenies from two mapping populations were field planted for phenotypic and genotypic evaluation at three locations in Malaysia, (1) Forest Research Institute Malaysia field station at Segamat, Johor, (2) Borneo Tree Seeds and Seedlings Supplies Sdn, Bhd. (BTS) field trial site at Bintulu, Sarawak, and (3) Asiaprima RCF field trial site at Lancang, Pahang. During field planting, mislabeling was reported at Segamat, Johor, and a similar problem was suspected for Bintulu, Sarawak. Early screening with two isozymes effectively selected hybrid progenies, and these hybrids were subsequently further confirmed by using species-specific SNPs. During field planting, clonal mislabeling was reported and later confirmed by using a small set of STMS markers. A large set of SNPs were also used to screen all ramets in both populations. A total of 65.36% mislabeled ramets were encountered in the wood density population and 60.34% in the fibre length mapping population. No interpopulation pollen contamination was detected because all ramets found their match within the same population in question. However, mislabeling was detected among ramets of the same population. Mislabeled individuals were identified and grouped as they originated from 93 pods for wood density and 53 pods for fibre length mapping populations. On average 2 meiotically unique seeds per pod (179 seeds/93 pods) for wood density and 3 meiotically unique seeds per pod (174 seeds/53 pods) for fibre length mapping population were found. A single step statistical method was used to evaluate the most informative set of SNPs that could subsequently be used for routine checks for mislabeling in multi-location field trials and for labelling superior clones to protect breeder’s rights. A preliminary set of SNPs with a high degree of informativeness was selected for the mislabeling analysis in conjunction with an assignment test. Two subsets were successfully identified, i.e., 51 SNPs for wood density and 64 SNPs for fibre length mapping populations to identify all mislabeled ramets which had been previously identified. Mislabeling seems to be a common problem due to the complexity involved in the production of mapping populations. Therefore, checking for mislabeling is imperative for breeding activities and for analyses such as linkage mapping in which a correlation between genotypic and phenotypic data is determined.  相似文献   
294.
污泥对苗圃生长的银合欢幼苗发芽和初期长势的影响   总被引:1,自引:1,他引:0  
研究了不同类型的污泥(城市的、工业的和住宅污泥)对苗圃生长的银合欢幼苗田间萌发、生长和分枝的影响.播种前先将不同类型污泥的混合物与养分匮乏的自然林土壤混合.播种的3和6月后,记录幼苗大田发芽、分枝状况和其他物理生长参数(枝条或根长、活力指数、茎直径、叶片数、分枝或根鲜重和干重、总的生物量干重增长)等.与对照幼苗相比,混合污泥的土壤中生长的幼苗田间发芽、分枝状况及其他生长参数均发生了显著变化.与其它条件生长的幼苗相比,住宅污泥与土壤混合(1:1)条件生长的3月龄和6月龄幼苗分枝数和分枝鲜或干重均最高.就生长参数而言,住宅污泥与自然林土壤混合(1:1)生长的幼苗长势最好.研究表明:退化的土壤补偿以住宅污泥可促进银合欢的田间发芽、生长以及分枝的形成.图1表3参29.  相似文献   
295.
Management of heavy metal-contaminated soil under drought and other harsh hydrological conditions is critical for protecting soil ecosystem services. In this study, we examined the effect of pig manure digestate-derived biochar as a soil amendment (15 t ha−1) with N fertilizer (180 kg ha−1) on soil and plant heavy metal levels and nutrient availability under various moisture regimes (optimal moisture ~15%, drought condition ≤5%, and flooded condition ≥35% wt.). It was observed that biochar applications significantly decreased heavy metals in the spring wheat plants, lowering Cr by 90%, Ni by 50%, Cd by 9% and Pb by 34% compared to non-biochar (control) treatments. However, the pig digestate-derived biochar increased heavy metals in soil under all moisture regimes, increasing soil Cr by 21%, Ni by 43%, Cu by 55%, Zn by 70%, and Pb by 12%. The availability of macroelements also increased with the biochar applications under the optimum moisture regimes in both soil and plants, increasing Mg2+ by 11%, P by 4%, K+ by 50%, and Ca2+ by 56% in the soil, and Mg2+ by 13%, P by 69%, K+ by 29, and Ca2+ by 39% in plants. Biochar addition also improved chlorophyll fluorescence (CF) levels in the crop for the entire season (12th to 62nd day) and the aboveground crop biomass and dry matter contents both increased. Consequently, the use of pig manure digestate-derived biochar with N fertilizer under normal moisture conditions was able to reduce heavy metal availability to plants and thus could be used in contaminated soils to maintain better crop growth and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号