首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   10篇
  国内免费   2篇
林业   24篇
农学   29篇
基础科学   4篇
  83篇
综合类   26篇
农作物   34篇
水产渔业   4篇
畜牧兽医   66篇
园艺   9篇
植物保护   28篇
  2023年   2篇
  2022年   11篇
  2021年   11篇
  2020年   14篇
  2019年   13篇
  2018年   23篇
  2017年   20篇
  2016年   14篇
  2015年   9篇
  2014年   19篇
  2013年   35篇
  2012年   18篇
  2011年   16篇
  2010年   20篇
  2009年   11篇
  2008年   10篇
  2007年   11篇
  2006年   12篇
  2005年   8篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
61.
In the present study, embryogenic calli of sugarcane variety BL4 were induced using 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin in different concentrations and combinations. In contrast to earlier studies, embryogenic callus sectors were identified and isolated microscopically within 1–2 weeks. Subsequently, 51 media formulations were used for regeneration of proliferated embryogenic callus, using MS medium supplemented with three different cytokinins [kinetin, 6-Benzylamino purine (BAP), and thidiazuron (TDZ)] and auxins (IAA/NAA and IBA) in different combination and concentrations. After acclimatization, the genomic DNA of regenerated plants was studied to explore the insertion polymorphism of transposable elements in order to ascertain the variation among somaclones. Though low concentration of kinetin with 2,4-D was found supportive to embryogenic callus development, the highest number of regenerated plantlets was observed using BAP (1 μM), however the plantlets had very low fresh weight (2.2 g). Conversely, TDZ alone supported a significant increase in the number of plantlets regenerated (38–40) with higher fresh weight. The somaclones generated during this study showed considerable positional polymorphism of activator-like transposable elements possibly due to the stress associated with in vitro culture. This study provides a procedure to produce regenerated sugarcane plants from embryogenic callus in a relatively short time.  相似文献   
62.
Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)–microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.  相似文献   
63.
The present study is focused on studying the swelling kinetics, thermal and aqueous stabilities, and determination of various forms of water in the chitosan (CS) and polyacrylonitrile (PAN) blend and semi-interpenetrating polymer network (sIPN). CS/PAN blend hydrogel films were prepared by solution casting technique. The blend film with optimum swelling properties was selected for the synthesis of sIPN. CS in the blend was crosslinked with the vapors of Glutaraldehyde (GTA) to prepare sIPN. The fabricated CS/PAN blend and sIPN hydrogels films were characterized with Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and field emission scanning electron microscope (FESEM). The kinetics of swelling, bound and unbound waters and aqueous stability were determined experimentally. FESEM showed good miscibility between CS and PAN, FTIR showed no chemical interaction between CS and PAN; however, it did show a doublet for the sIPN, TGA showed improved thermal stability and swelling kinetic followed second order kinetics. The degree of swelling of the sIPN hydrogels samples at room temperature varied from ~2200 % (with a fair degree of stability (~30 %)) to ~1000 % (with high degree of aqueous stability (43 %)) with increase in the crosslinking time. The calculated unbound water (WUB) max., for the blend was 52.3 % whereas for the bound (WB) the max., was 41.9 %. However, for sIPN hydrogel films, the WUB water decreased (max. 21.0 %) where as the WB increased (max. 52.0 %). The decrease in WUB and increase in the WB is attributed to the formation of a compact structure and increase in the contact area between the water and polymers in sIPN hydrogels due to the induction of new water contacting point in these hydrogel films, respectively.  相似文献   
64.
Studies were conducted to investigate the accumulation pattern of capsaicinoids and antioxidants such as carotenoids, ascorbic acid and phenolic compounds in three hot pepper hybrids at five different harvesting stages: immature green, mature green, color break, red ripe and dried fruit. Capsaicin and dihydrocapsaicin contents were maximum at mature green stage in both Sky Red (61.30 and 43.76 mg/100 g) and Wonder King (43.93 and 26.16 mg/100 g) hybrids, whereas Maha hybrid reached top values at color break stage (39.13 and 24.20 mg/100 g). The accumulation of total carotenoids showed an 8-fold increase from red ripe (12 mg/100 g) to dried fruit stage (96 mg/100 g), while a noticeable decline by 76 % was observed for ascorbic acid at same harvesting stages (150 vs. 36 mg/100 g, respectively). The three hot pepper hybrids showed great variations in the evolution of total phenolic contents during harvesting stages. Overall, the mature green stage was ideal to acquire maximum pungency due to capsaicinoids, while peppers at red ripe stage were best sources of ascorbic acid and dried fruits contained higher levels of total carotenoids.  相似文献   
65.
An experiment was conducted to access the genetic variability among early vigour and quantitative traits under limited moisture in F2 generation of a 5 × 5 diallel cross of bread wheat. The results indicated that there was significant genotypic variation among the genotypes. Additive dominance model revealed full fitness of the data for RL, DSW, FRW, DRW, spike length, and 1000-grain weight but was partially fit for SL, FSW, R/S, tillers per seedling, plant height, tillers per plant, spikelets per spike, and grain yield per plant. The partially adequate models for these plant characters might be due to the presence of non-allelic interaction, linkage, and non-independent distribution of the genes in the parents. Additive genes coupled with moderate to high narrow sense heritability were involved in the heritage of all the traits, which indicated a higher scope of selection in early generations.  相似文献   
66.
Stripe rust is a continuous threat to wheat crop all over the world. It causes considerable yield losses in wheat crop every year. Continuous deployment of adult plant resistance(APR) genes in newly developing wheat cultivars is the most judicious strategy to combat this disease. Herein, we dissected the genetics underpinning stripe rust resistance in Pakistani wheat germplasm. An association panel of 94 spring wheat genotypes was phenotyped for two years to score the infestation of stripe rust on each accession and was scanned with 203 polymorphic SSRs. Based on D' measure, linkage disequilibrium(LD) exhibited between loci distant up to 45 c M. Marker-trait associations(MTAs) were determined using mixed linear model(MLM). Total 31 quantitative trait loci(QTLs) were observed on all 21 wheat chromosomes. Twelve QTLs were newly discovered as well as 19 QTLs and 35 previously reported Yr genes were validated in Pakistani wheat germplasm. The major QTLs were QYr.uaf.2 AL and QYr.uaf.3 BS(PVE, 11.9%). Dissection of genes from the newly observed QTLs can provide new APR genes to improve genetic resources for APR resistance in wheat crop.  相似文献   
67.
【目的】分析梅PmARF17的生物学功能,探究梅花发育进程中其表达丰度与内源激素动态变化的关系,为梅花发育的调控研究提供依据。【方法】以梅品种‘大嵌蒂’为试材,克隆PmARF17,利用生物信息学软件分析基因结构、系统进化及其与其他物种同源蛋白的差异;亚细胞定位确定PmARF17蛋白在细胞中作用的部位;以梅品种‘大嵌蒂’和‘龙眼’不同发育阶段的花芽、叶芽、花器官为试材,利用qRT-PCR检测PmARF17时空表达模式,通过UPLC法测定IAA、GA3、ABA、ZT含量的动态变化,并与PmARF17的表达进行相关性分析;克隆PmARF17启动子,分析启动子的顺式作用元件,利用瞬时表达解析PmARF17与GA3的调控模式。【结果】从梅品种‘大嵌蒂’中克隆得到PmARF17,系统进化树分析表明PmARF17蛋白与其他植物的ARF蛋白序列高度同源;亚细胞定位表明其作用于细胞核和细胞膜上;qRT-PCR表达和内源激素含量的相关性分析表明,PmARF17的表达与IAA含量的变化趋势没有明显的相关性。PmARF17在雌蕊完好花芽中的表达水平相对不完全花芽显著上调,而GA3含量与PmARF17的表达趋势一致。ABA和ZT含量总体上与PmARF17的表达呈相反的趋势,表明两者可能抑制PmARF17的表达。PmARF17启动子含有GA顺式元件,且具有启动活性和组织表达特异性,在花瓣、雄蕊及根部特异表达。【结论】 PmARF17可能是梅花发育的正调控基因,促进梅雌蕊的正常发育。PmARF17的表达可能受到GA3的正调控,其可能通过作用于雄蕊和花瓣,进而影响梅的雌蕊发育进程。  相似文献   
68.
A pot experiment was conducted to study the comparative effect of waste water (WW) and ground water (GW) alone and along with different nitrogen (N), phosphorus (P), and potassium (K) combinations (N0P0K0, N40P15K15, N60P30K30, N80P45K45) together with different levels of fly ash (FA) (FA0, FA10, FA20), to obtain a suitable combination of fertilizers, FA and water based on the growth, physiology, yield, and heavy metal contents of Brassica campestris cv. Pusa Gold. Results revealed that WW irrigation proved beneficial over GW. All the parameters increased in both levels of FA10 and FA20 along with three doses of NPK but FA at 20 t ha?1 proved better. The effect was more efficacious with both wastes together which makes NPK optimum at N60P30K30 instead of N80P45K45 treatment combinations and thereby lowered input of fertilizers. Therefore, utilization of these wastes may be recommended for the purpose of irrigation, soil amendment, and as a source of nutrients in augmenting the mustard yield.  相似文献   
69.
Quinoa (Chenopodium quinoa Willd.), traditionally called the mother of grains, has the potential to grow under high temperatures and drought, tolerating levels regarded as stresses in other crop species. A pot experiment was conducted in a climate chamber to investigate the potential of quinoa tolerance to increasing drought and temperature. Quinoa plants were subjected to three irrigation and two temperature regimes. At low temperature, the day/night climate chamber temperature was maintained at 18/8 °C and 25/20 °C for high temperature throughout the treatment period. The irrigation treatments were full irrigation (FI), deficit irrigation (DI) and alternate root‐zone drying (ARD). FI plants were irrigated daily to the level of the pot's water‐holding capacity. In DI and ARD, 70 % water of FI was applied either to the whole pot or to one side of the pot alternating, respectively. The results indicated that plant height and shoot dry weight significantly decreased by ARD and DI compared to FI treatment both at low and at high temperatures. However, plants in ARD treatment showed significantly higher plant height and shoot dry weight compared to DI especially at higher temperature, which is linked to increased xylem ion content. Higher quinoa plant growth in ARD was associated with increase in water‐use efficiency (WUEi) due to higher abscisic acid concentration and higher nutrient contents compared to DI. From results, it can be concluded that quinoa plant growth is favoured by high temperature (25/20 °C) and ARD is an effective irrigation strategy to increase WUE in drought prone areas.  相似文献   
70.
Soil salinity is one of the major production constraints. Development and planting of salt‐tolerant varieties can reduce yield losses due to salinity. We screened 185 rice genotypes at germination stage in petri dishes under control, 50, 100 and 150 mm salt stress, and at seedling stage in Yoshida's hydroponic nutrient solution under control, 50 and 100 mm salt stress. At germination stage, 15 genotypes including Nona Bokra, Sonahri Kangni, 7421, 7423 and 7467, whereas at seedling stage, 28 genotypes including Nona Bokra, Jajai‐77, KSK‐133, KSK‐282, Fakhr‐e‐Malakand, Pakhal, IR‐6, Khushboo‐95, Shahkar and Shua‐92 were found salt tolerant. Basmati‐370, Mushkan, Homo‐46 and accessions 7436, 7437 and 7720 were sensitive to salinity at both germination and seedling stage. We further screened a subset of 33 salt‐tolerant and salt‐sensitive genotypes with SSR markers. Four SSR markers (RM19, RM171, RM172 and RM189) showed significant association with two or more of the studied traits under 50, 100 and 150 mm salt stress. These markers may be further tested for their potential in marker‐assisted selection. The salt‐tolerant genotypes identified in this study may prove useful in the development of salt‐tolerant rice varieties in adapted genetic background.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号