首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   9篇
林业   3篇
农学   4篇
基础科学   2篇
  11篇
综合类   5篇
农作物   16篇
水产渔业   4篇
畜牧兽医   39篇
植物保护   5篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   8篇
  2015年   1篇
  2014年   9篇
  2013年   11篇
  2012年   9篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1985年   1篇
  1958年   1篇
  1956年   1篇
排序方式: 共有89条查询结果,搜索用时 24 毫秒
11.
Headspace solid phase microextraction (HS-SPME) was used to isolate the off-flavor volatile compounds, which are formed during the oxidation of porcine liver induced by iron. Poly(dimethylsiloxane)/divinylbenzene fiber was used in the HS-SPME. Changes in the volatile compounds of oxidized porcine liver and unsaturated fatty acids induced by iron were examined. Results showed that 1-octen-3-one (metallic), hexanol (weak metallic), 1-octen-3-ol (mushroomlike), (E)-2-nonenal (cardboardlike), and (E,E)-2,4-decadienal (fatty, oily) were the main contributors to the overall off-flavor of porcine liver. The results of the sensory evaluation revealed that oxidized arachidonic acid has a major impact on metallic and liverlike off-flavor and that when liverlike off-flavor is perceived, metallic is also included. Oxidized linolenic acid was the most important contributor to the objectionable fishy off-flavor. Oxidized porcine liver exhibited distinct metallic, liverlike, and weak fishy background notes. Liverlike flavor had a high correlation coefficient with odor characteristics such as metallic (0.839) and fishy (0.777). In this study, it was clearly observed that the stronger the metallic and fishy off-flavor the higher the perception of liverlike off-flavor.  相似文献   
12.
To develop reusable incontinence products, blend nonwovens of hollow viscose rayon (HVR) and super absorbent fibers (SAFs) were prepared using a needle-punching process and their liquid handling properties, such as the fluid absorption capacity, fluid retention capacity, fluid absorption under load, moisture evaporation rate, and repeated water absorption were investigated. As the SAF content in the HVR/SAF blend nonwovens was increased, the fluid absorption capacity, fluid retention capacity, and fluid absorption under load increased, whereas the moisture evaporation rate decreased. SAF had a more significant effect on fluid retention than fluid absorption. In the case of HVR/SAF(8/2) and HVR/SAF(7/3), more than 100 % of the fluid absorption capacity was retained even after 5 cycles of repeated water absorption tests. Overall, the HVR/SAF blend nonwovens are good candidates for reusable incontinence products.  相似文献   
13.
14.
Poly(vinyl alcohol) (PVA)/zirconium oxide (ZrO2) composite nanofibers with a skin-core structure were prepared and the effect of ZrO2 particle content on uniform web formation was investigated. The optimized polymer concentration, tip to collector distance, and applied voltage for electrospinning were 11 wt%, 12 cm, and 20 kV, respectively. Skin-core PVA/ZrO2 composite nanofibers containing up to 12 wt% ZrO2 were successfully prepared, but it was difficult to obtain PVA/ZrO2 composite nanofiber webs via conventional electrospinning. Increasing the amount of ZrO2 caused the morphology of the PVA/ZrO2 composite nanofibers to become a non-uniform nanoweb with irregular nanofiber diameters. While it was difficult to obtain a uniform nanofiber web containing a content of ZrO2 over 6 wt% for conventional electrospinning, a more uniform nanofiber web could be obtained at up to 9 wt% ZrO2 using a skin-core dual nozzle. More uniform webs could also be obtained when ZrO2 was in the skin rather than the core.  相似文献   
15.
In this study, micro-porous carboxymethyl cellulose (CMC) nonwovens were prepared by carboxymethylation of cellulose nonwovens produced by a wet-laid process and their properties were investigated for potential applications as adhesion prevention barriers. After carboxymethylation, the thickness and mean pore size of the cellulose nonwovens were increased, whereas their pore size distribution became narrower. Tensile strength of cellulose nonwovens was proportional to basis weight, and dramatically increased after carboxymethylation. CMC nonwovens immediately absorbed a phosphate buffered saline solution and showed swollen phase within 1 min. It was found that the thickness and pore size distribution of CMC nonwovens could be easily controlled by the wet-laid process. It is expected that the CMC nonwovens can be used as adhesion prevention barriers.  相似文献   
16.
17.
ABSTRACT Today, technology‐oriented business incubators are a worldwide phenomenon, although empirical research evidence clearly suggests that they tend to fail in supporting entrepreneurship, innovation, and regional development and, therefore, do not fulfil their expected role as policy instrument. The paper focuses on this obvious antagonism. It deliberates upon political rationales, reviews evaluation literatures, and delineates suggestions for the future of the incubation industry. The main conclusion is that technology‐oriented business incubators should be run as private organisations without public funding.  相似文献   
18.
19.
The permeability defined by Darcy’s law indicates the degree of ability that a fluid can flow through nonwoven media under a differential pressure in laminar flow. The permeability generally indicates the specific permeability or absolute permeability. On the other hand, if the fluid is water, the permeability indicates the hydraulic conductivity or permeability coefficient. The permeability is one of the important properties for nonwoven media and a prediction of the permeability acts as a bridge between the manufacturing technology and performance requirements. Because capillary channel theory aims to make the flow of fluid easier and more understandable, many models are based on capillary channel theory. On the other hand, the theory has a limitation in that it is unsuitable for high porosity media. In this study, a very thin downstream layer, which was suggested by Lifshutz [9], was introduced to derive a prediction model of hydraulic permeability. Needle-punched and spunbonded nonwoven fabrics with various basis weights were used in the cross-plain water permeability test. From this ‘thin layer’ model, reasonable agreement between the predicted and experimental results was obtained.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号