首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   8篇
林业   36篇
  24篇
综合类   137篇
农作物   2篇
水产渔业   5篇
畜牧兽医   122篇
园艺   1篇
植物保护   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   16篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   15篇
  2008年   18篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   5篇
  2002年   9篇
  2001年   12篇
  2000年   5篇
  1999年   8篇
  1998年   16篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1982年   5篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1971年   8篇
  1970年   4篇
  1969年   3篇
  1968年   4篇
  1967年   7篇
  1966年   5篇
  1965年   3篇
  1963年   3篇
  1949年   2篇
排序方式: 共有328条查询结果,搜索用时 78 毫秒
51.
Relationships between diel changes in stem expansion and contraction and discharge and refilling of stem water storage tissues were studied in six dominant Neotropical savanna (cerrado) tree species from central Brazil. Two stem tissues were studied, the active xylem or sapwood and the living tissues located between the cambium and the cork, made up predominantly of parenchyma cells (outer parenchyma). Outer parenchyma and sapwood density ranged from 320 to 410 kg m(-3) and from 420 to 620 kg m(-3), respectively, depending on the species. The denser sapwood tissues exhibited smaller relative changes in cross-sectional area per unit change in water potential compared with the outer parenchyma. Despite undergoing smaller relative changes in cross-sectional area, the sapwood released about 3.5 times as much stored water for a given change in area as the outer parenchyma. Cross-sectional area decreased earlier in the morning in the outer parenchyma than in the sapwood with lag times up to 30 min for most species. The relatively small lag time between dimensional changes of the two tissues suggested that they were hydraulically well connected. The initial morning increase in basal sap flow lagged about 10 to 130 min behind that of branch sap flow. Species-specific lag times between morning declines in branch and main stem cross-sectional area were a function of relative stem water storage capacity, which ranged from 16 to 31% of total diurnal water loss. Reliance on stored water to temporarily replace transpirational losses is one of the homeostatic mechanisms that constrain the magnitude of leaf water deficits in cerrado trees.  相似文献   
52.
This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).  相似文献   
53.
Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (g(s)), and disequilibrium in water potential between covered and exposed leaves (DeltaPsi(L)). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal g(s) was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m(-2) s(-1) by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal DeltaPsi(L) was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of DeltaPsi(L) increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.  相似文献   
54.
55.
56.
Forty seven free-ranging, adult, male koalas were captured and administered an intramuscular injection of the dissociative anaesthetic, Telazol (tiletamine HCl plus zolazepam HCl), at dose rates of 5.0 to 7.7 mg/kg body weight. Anaesthesia induction was rapid and smooth and resulted in a surgical plane of anaesthesia lasting 30 to 45 min. There was no depression of heart rate or respiration. Mild salivation occurred in most animals, but was not a problem because the swallowing reflex was retained. There was no mortality or morbidity and the anaesthesia level was sufficient to allow electroejaculation and multiple blood sampling with no apparent animal discomfort. For 10 of 19 males in which anaesthesia was required for a 90 min protocol, a supplementary Telazol injection (average, 2.5 mg/kg) was necessary. All koalas recovered completely within 3 to 4 h of the initial injection. The results suggest that the optimal Telazol dosage for the adult male koala is 7.0 mg/kg body weight. The retrospective analysis of 259 anaesthesia records involving 14 species indicated that Telazol was equally effective and safe in other captive marsupials.  相似文献   
57.
This research examined the effect of initial stocking density and feeding regime on larval growth and survival of Japanese flounder, Paralichthys olivaceus. Larval rearing trials were conducted in nine 50‐L tanks with different initial stocking densities combined with different feed rations (20 larvae/L with standard feed ration [LD], 80 larvae/L with standard feed ration [HD], and 80 larvae/L with four times the standard feed ration [HD+]). Larvae were stocked on 0 days posthatch (DPH) following hatching of the fertilized embryos. Larval total length (TL), survival rates, and final densities were observed on larval settlement (32 DPH) to evaluate larval rearing performance. At 32 DPH, there were no significant differences (p > .05) in TL or survival rates between the LD (46.5 ± 17.0%) and HD+ (40.3 ± 9.4%). The TL and survival rate of HD (23.1 ± 3.5%) were significantly lower than that of LD and HD+ (p < .05). However, the larval density of HD was significantly higher than that of LD (p < .05). HD+ achieved the best larvae production (32.27 ± 7.51 larvae/L), supported by sufficient food source, high water exchange, and proper water quality management (routine siphoning, surface skimming). The larval‐rearing protocols and larval development from hatching to metamorphosis is described in detail, with corresponding photographs taken during the experiment.  相似文献   
58.
Water use, hydraulic properties and xylem vulnerability to cavitation were studied in the coffee (Coffea arabica L.) cultivars San Ramon, Yellow Caturra and Typica growing in the field under similar environmental conditions. The cultivars differed in growth habit, crown morphology and total leaf surface area. Sap flow, stomatal conductance (g(s)), crown conductance (g(c)), apparent hydraulic conductance of the soil-leaf pathway (G(t)), leaf water potential (Psi(L)) and xylem vulnerability to loss of hydraulic conductivity were assessed under well-watered conditions and during a 21-day period when irrigation was withheld. Sap flow, g(c), and G(t) were greatest in Typica both with and without irrigation, lowest in San Ramon, which was relatively unresponsive to the withholding of irrigation, and intermediate in Yellow Caturra. The cultivars had similar g(s) when well watered, but withholding water decreased g(s) more in Typica and Yellow Caturra than in San Ramon. Typica had substantially lower Psi(L) near the end of the unirrigated period than the other cultivars (-2.5 versus -1.8 MPa), consistent with the relatively high sap flow in this cultivar. Xylem vulnerability curves indicated that Typica was less susceptible to loss of hydraulic conductivity than the other cultivars, consistent with the more negative Psi(L) values of Typica in the field during the period of low soil water availability. During soil drying, water use declined linearly with relative conductivity loss predicted from vulnerability curves. However, cultivar-specific relationships between water use and predicted conductivity loss were not observed because of pronounced hysteresis during recovery of water use following soil water recharge. All cultivars shared the same functional relationship between integrated daily sap flow and G(t), but they had different operating ranges. The three cultivars also shared common functional relationships between hydraulic architecture and water use despite consistent differences in water use under irrigated and dry soil conditions. We conclude that hydraulic architectural traits, rate of water use per plant and crown architecture are important determinants of short- and long-term variations in the water balance of Coffea arabica.  相似文献   
59.
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.  相似文献   
60.
Functional convergence in hydraulic architecture and water relations, and potential trade-offs in resource allocation were investigated in six dominant neotropical savanna tree species from central Brazil during the peak of the dry season. Common relationships between wood density and several aspects of plant water relations and hydraulic architecture were observed. All species and individuals shared the same negative exponential relationship between sapwood saturated water content and wood density. Wood density was a good predictor of minimum (midday) leaf water potential and total daily transpiration, both of which decreased linearly with increasing wood density for all individuals and species. With respect to hydraulic architecture, specific and leaf-specific hydraulic conductivity decreased and the leaf:sapwood area ratio increased more than 5-fold as wood density increased from 0.37 to 0.71 g cm(-3) for all individuals and species. Wood density was also a good predictor of the temporal dynamics of water flow in stems, with the time of onset of sap flow in the morning and the maximum sap flow tending to occur progressively earlier in the day as wood density increased. Leaf properties associated with wood density included stomatal conductance, specific leaf area, and osmotic potential at the turgor loss point, which decreased linearly with increasing wood density. Wood density increased linearly with decreasing bulk soil water potential experienced by individual plants during the dry season, suggesting that wood density was greatest in individuals with mostly shallow roots, and therefore limited access to more abundant soil water at greater depths. Despite their taxonomic diversity and large intrapopulation differences in architectural traits, the six co-occurring species and their individuals shared similar functional relationships between all pairs of variables studied. Thus, rather than differing intrinsically in physiological responsiveness, the species and the individuals appeared to have distinct operating ranges along common physiological response curves dictated by plant architectural and structural features. The patterns of water uptake and access to soil water during the dry season appeared to be the main determinant of wood density, which constrained evolutionary options related to plant water economy and hydraulic architecture, leading to functional convergence in the neotropical savanna trees studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号