首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   13篇
林业   35篇
  26篇
综合类   134篇
农作物   2篇
水产渔业   6篇
畜牧兽医   187篇
园艺   2篇
植物保护   1篇
  2018年   7篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   24篇
  2012年   9篇
  2011年   10篇
  2010年   11篇
  2009年   7篇
  2008年   15篇
  2007年   19篇
  2006年   10篇
  2005年   12篇
  2004年   11篇
  2003年   8篇
  2002年   11篇
  2001年   16篇
  2000年   7篇
  1999年   7篇
  1998年   13篇
  1997年   4篇
  1996年   12篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   14篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   4篇
  1986年   7篇
  1985年   6篇
  1982年   5篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1971年   8篇
  1970年   4篇
  1969年   3篇
  1968年   4篇
  1967年   7篇
  1966年   5篇
  1965年   3篇
  1963年   3篇
  1949年   2篇
排序方式: 共有393条查询结果,搜索用时 78 毫秒
251.
Kuru is an acquired prion disease largely restricted to the Fore linguistic group of the Papua New Guinea Highlands, which was transmitted during endocannibalistic feasts. Heterozygosity for a common polymorphism in the human prion protein gene (PRNP) confers relative resistance to prion diseases. Elderly survivors of the kuru epidemic, who had multiple exposures at mortuary feasts, are, in marked contrast to younger unexposed Fore, predominantly PRNP 129 heterozygotes. Kuru imposed strong balancing selection on the Fore, essentially eliminating PRNP 129 homozygotes. Worldwide PRNP haplotype diversity and coding allele frequencies suggest that strong balancing selection at this locus occurred during the evolution of modern humans.  相似文献   
252.
The most common inherited [correct] form of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting adult motor neurons, is caused by dominant mutations in the ubiquitously expressed Cu-Zn superoxide dismutase (SOD1). In chimeric mice that are mixtures of normal and SOD1 mutant-expressing cells, toxicity to motor neurons is shown to require damage from mutant SOD1 acting within nonneuronal cells. Normal motor neurons in SOD1 mutant chimeras develop aspects of ALS pathology. Most important, nonneuronal cells that do not express mutant SOD1 delay degeneration and significantly extend survival of mutant-expressing motor neurons.  相似文献   
253.
Two kinds of phenotypic expression in purine biosynthesis result from recessive mutation to adel2 in baker's yeast. The mutants are adenine-specific, blocked in the conversion of inosine 5'-phosphate to adenylosuccinic acid; their response to inhibition of pathway activity by adenine is considerably reduced. Allelic partial reversions can restore prototrophy without correcting the regulatory defect imparted by the primary mutation. The separation of the two properties of the locus by allelic mutation supports the hypothesis that the locus specifies a protein of two independent functions, enzymatic and regulatory.  相似文献   
254.
Partial purification of an opiate receptor from mouse brain   总被引:2,自引:0,他引:2  
A proteolipid isolated from a lipid extract of mouse brain demonstrates stereospecific binding properties for levorphanol. It is present only in neuronal tissue and most abundant in the rhombencephalon. One component saturates at a concentration corresponding to maximum pharmacologic effect in vivo. The estimated mass is 60,000 daltons per bound opiate molecule.  相似文献   
255.
The western equatorial Pacific warm pool is subject to strong east-west migrations on interannual time scales in phase with the Southern Oscillation Index. The dominance of surface zonal advection in this migration is demonstrated with four different current data sets and three ocean models. The eastward advection of warm and less saline water from the western Pacific together with the westward advection of cold and more saline water from the central-eastern Pacific induces a convergence of water masses at the eastern edge of the warm pool and a well-defined salinity front. The location of this convergence is zonally displaced in association with El Nino-La Nina wind-driven surface current variations. These advective processes and water-mass convergences have significant implications for understanding and simulating coupled ocean-atmosphere interactions associated with El Nino-Southern Oscillation (ENSO).  相似文献   
256.
A quasi two-dimensional drop of a magnetic fluid (ferrofluid) in a magnetic field is one example of the many systems, including amphiphilic monolayers, thin magnetic films, and type I superconductors, that form labyrinthine patterns. The formation of the ferrofluid labyrinth was examined both experimentally and theoretically. Labyrinth formation was found to be sensitively dependent on initial conditions, indicative of a space of configurations having a vast number of local energy minima. Certain geometric characteristics of the labyrinths suggest that these multiple minima have nearly equivalent energies. Kinetic effects on pattern selection were found in studies of fingering in the presence of timedependent magnetic fields. The dynamics of this pattern formation was studied within a simple model that yields shape evolutions in qualitative agreement with experiment.  相似文献   
257.
258.
The impact of nocturnal water loss and recharge of stem water storage on predawn disequilibrium between leaf (psiL) and soil (psiS) water potentials was studied in three dominant tropical savanna woody species in central Brazil (Cerrado). Sap flow continued throughout the night during the dry season and contributed from 13 to 28% of total daily transpiration. During the dry season, psiL was substantially less negative in covered transpiring leaves, throughout the day and night, than in exposed leaves. Before dawn, differences in psiL between covered and exposed leaves were about 0.4 MPa. When relationships between sap flow and psiL of exposed leaves were extrapolated to zero flow, the resulting values of psiL (a proxy of weighted mean soil water potential) in two of the species were similar to predawn values of covered leaves. Consistent with substantial nocturnal sap flow, stomatal conductance (gs) never dropped below 40 mmol m(-2) s(-1) at night, and in some cases, rose to as much as 100 mmol m(-2) s(-1) before the end of the dark period. Nocturnal gs decreased linearly with increasing air saturation deficit (D), but there were species-specific differences in the slopes of the relationships between nocturnal gs and D. Withdrawal and recharge of water from stem storage compartments were assessed by monitoring diel fluctuations of stem diameter with electronic dendrometers. Stem water storage compartments tended to recharge faster when nocturnal transpiration was reduced by covering the entire plant. Water potential of covered leaves did not stabilize in any of the plants before the end of the dark period, suggesting that, even in covered plants, water storage tissues were not fully rehydrated by dawn. Patterns of sap flow and expansion and contraction of stems reflected the dynamics of water movement during utilization and recharge of stem water storage tissues. This study showed that nighttime transpiration and recharge of internal water storage contribute to predawn disequilibrium in water potential between leaves and soil in neotropical savanna woody plants.  相似文献   
259.
Hydraulic redistribution of soil water by neotropical savanna trees   总被引:1,自引:0,他引:1  
The magnitude and direction of water transport by the roots of eight dominant Brazilian savanna (Cerrado) woody species were determined with a heat pulse system that allowed bidirectional measurements of sap flow. The patterns of sap flow observed during the dry season in species with dimorphic root systems were consistent with the occurrence of hydraulic redistribution of soil water, the movement of water from moist to drier regions of the soil profile via plant roots. In these species, shallow roots exhibited positive sap flow (from the soil into the plant) during the day and negative sap flow (from the plant into the soil) during the night. Sap flow in the taproots was positive throughout the 24-h period. Diel fluctuations in soil water potential, with maximum values occurring at night, provided evidence for partial rewetting of upper soil layers by water released from shallow roots. In other species, shallow roots exhibited negative sap flow during both the day and night, indicating that hydraulic redistribution was occurring continuously. A third sap flow pattern was observed at the end of the dry season after a heavy rainfall event when sap flow became negative in the taproot, and positive in the small roots, indicating movement of water from upper soil layers into shallow roots, and then into taproots and deeper soil layers. Experimental manipulations employed to evaluate the response of hydraulic redistribution to changes in plant and environmental conditions included watering the soil surface above shallow roots, decreasing transpiration by covering the plant and cutting roots where probes were inserted. Natural and manipulated patterns of sap flow in roots and stems were consistent with passive movement of water toward competing sinks in the soil and plant. Because dry shallow soil layers were often a stronger sink than the shoot, we suggest that the presence of a dimorphic root system in deciduous species may play a role in facilitating leaf expansion near the end of the dry season when the soil surrounding shallow lateral roots is still dry.  相似文献   
260.
We tested, compared and modified three models of stomatal conductance at the leaf level in a forest ecosystem where drought stress is a major factor controlling forest productivity. The models were tested against 2 years (1999 and 2000) of leaf-level measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing in the Mediterranean climate of California, USA. The Ball, Woodrow and Berry (1987) (BWB) model was modified to account for soil water stress. Among the models, results of the modified BWB model were in the closest agreement with observations (r2 = 0.71). The Jarvis (1976) model showed systematic simulation errors related to vapor pressure deficit (r2 = 0.65). Results of the Williams, Rastetter, Fernandes et al. (1996) (SPA) model showed the poorest correlation with empirical data, but this model has only one calibration parameter (r2 = 0.60). Sensitivity analyses showed that, in all three models, predictions of stomatal conductance were most responsive to photosynthetically active radiation and soil water content. Stomatal conductance showed little sensitivity to vapor pressure deficit in the Jarvis model, whereas in both the BWB and SPA models, vapor pressure deficit (or relative humidity) was the third most important variable. Parameterization of the SPA model was in accordance with the parameterization of the modified BWB model, although the two models differ greatly. Measured and modeled results indicate that stomatal behavior is not water conservative during spring; however, during summer, when soil water content is low and vapor pressure deficit is high, stomatal conductance decreases and, according to the models, intrinsic water- use efficiency increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号