首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18353篇
  免费   123篇
  国内免费   12篇
林业   3765篇
农学   1384篇
基础科学   162篇
  3242篇
综合类   871篇
农作物   2186篇
水产渔业   1927篇
畜牧兽医   1812篇
园艺   1147篇
植物保护   1992篇
  2024年   6篇
  2023年   8篇
  2022年   24篇
  2021年   41篇
  2020年   61篇
  2019年   60篇
  2018年   2786篇
  2017年   2747篇
  2016年   1235篇
  2015年   120篇
  2014年   102篇
  2013年   137篇
  2012年   916篇
  2011年   2253篇
  2010年   2185篇
  2009年   1344篇
  2008年   1452篇
  2007年   1694篇
  2006年   133篇
  2005年   193篇
  2004年   202篇
  2003年   234篇
  2002年   166篇
  2001年   40篇
  2000年   59篇
  1999年   18篇
  1998年   17篇
  1997年   14篇
  1996年   17篇
  1995年   28篇
  1994年   10篇
  1993年   25篇
  1992年   17篇
  1991年   8篇
  1990年   8篇
  1989年   12篇
  1988年   18篇
  1987年   9篇
  1985年   13篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1978年   3篇
  1977年   9篇
  1976年   5篇
  1974年   3篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Building proton transfer channel is an important strategy to optimize the proton transfer process of the proton exchange membrane (PEM). In this work, sulfonated pre-oxidized nanofibers were prepared by solution blowing of polyacrylonitrile (PAN) nanofibers followed by pre-oxidization and sulfonating, and the nanofibers were composited with SPEEK to enhance its performance as PEM. The results of the proton conductivity verified that the employment of sulfonated pre-oxidized nanofibers improved the proton conductivity. Meanwhile, the introduction of the sulfonated pre-oxidized nanofibers realized the upgrades of the thermostability and water absorbency of the membrane, and led to the decrease of the swelling property and methyl alcohol’s permeability of the material. It is indicated that the composite membrane is promising materials for PEM fuel cells.  相似文献   
92.
The objective of this research was to survey the effects of starch quaternization and sulfosuccinylation on the adhesion of cold starch paste to raw cotton fibers for cotton warp sizing at low temperature. Acid-thinned cornstarch (ATS) was quaternized and then sulfosuccinylated to introduce 3-(trimethylammonium chloride)-2-hydroxypropyl and sulfosuccinate substituents onto its backbones. The electroneutrality of starch samples prepared was achieved by maintaining a constant mole ratio (5.3:1) of the two substituents. A series of electroneutral cornstarch (ECS) samples with different levels of the substituents were derived by altering the feed ratio of the modifying reagents to starch for determining desirable level of starch modification. Adverse influences of cotton wax and starch retrogradation on the adhesion of cold starch paste to raw cotton fibers were evaluated to illustrate the effectiveness of starch quaternization and sulfosuccinylation. It was found that the modification was able to alleviate the adverse influence of starch retrogradation and ameliorate the adhesion to the fibers at low temperature. Higher level of the modification led to less retrogradation and resulted in strong adhesion. Furthermore, the adverse influence of cotton wax on the adhesion could be eliminated after a pre-wetting treatment of raw cotton warps with hot water. The adhesion of ECS paste to raw cotton at 60 °C was statically the same as that of ATS at 95 °C when total DS of ECS was 0.0443 or higher.  相似文献   
93.
The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha?1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha?1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.  相似文献   
94.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   
95.
A new fiber-reactive chitosan derivative was synthesized in two steps from a chitosan of low molecular weight. First, a water-soluble chitosan derivative, N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (short for HTCC), was prepared by reacting chitosan with 2,3-epoxypropyltrimethylammonium chloride. Second, HTCC was further modified by reacting with N-(hydroxymethyl)-acrylamide to prepare a fiber-reactive chitosan derivative, O-methyl acrylamide quaternary ammonium salt of chitosan (short for NMA-HTCC), which can form covalent bonds with silk fiber under alkaline conditions. The chemical structure of NMA-HTCC was characterized by Fourier transform infrared spectrum (FTIR) and nuclear magnetic resonance (NMR). The substitution degree of HTCC and the double-bond content of NMA-HTCC were tested. Then NMA-HTCC was used for antibacterial finishing of Bombyx Mori silk fabric. The results showed that silk fabric treated with NMA-HTCC had a significantly improved antibacterial activity to Staphylococcus aureus and Escherichia coli, and the antibacterial activity of silk fabric finished by NMA-HTCC was much better than that finished by chitosan and HTCC. Bombyx Mori silk fabric modified with NMA-HTCC demonstrated excellent durable antibacterial activity, even after 50 repeated launderings, the bacterial reduction rate of silk fabric maintained over 95 %.  相似文献   
96.
In recent decades, tremendous research has focused on the production of nanoscale fibers using synthetic polymers, with the goal of fabricating nanofibrous scaffolds for wound healing. However, the hydrophobicity of such polymers typically hinders attachment and proliferation of the cells. In this study, we combined poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) to fabricate blended nanofibers for wound healing by electrospinning. PLGA and SIS were dissolved in 1,1,1,3,3,3-hexafluoro isopropanol to produce different weight ratios of PLGA/SIS-blended nanofibrous membranes (NFM). Physicochemical characterization of the electrospun NFM was performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, water contact angle analysis, degradation test and tensile testing. The PLGA/SIS-blended NFM showed improved hydrophilicity and tensile strength. Better infiltration, attachment and proliferation of rat granulation fibroblasts of PLGA/SIS-blended NFMs compared to PLGA NFMs were identified by morphological differences determined by SEM and a water-soluble tetrazolium salt assay kit. Based on our results, the PLGA/SIS blended NFMs were found to be suitable for use as a potential material for wound dressing.  相似文献   
97.
Many industrial products are made of cord-rubber composite materials. Their mechanical behavior not only depends on rubber but also depends on cord. Nylon 66 cord is one of the most important reinforcement in these products. This paper research the mechanical behavior of nylon 66 cord under various load cases. A series of experiments were carried out to obtaining stress-strain curves under different load cases. Complex changes of the modulus and Mullins effect can be found in monotonic and cyclic tension, respectively. Mechanism of these behaviors has been analyzed considering both the twisted structure and material. A phenomenological constitutive model, accounting for different loading conditions, has been firstly proposed base on strain energy density function and damage mechanics method. The proposed model has been verified by comparing the predicted results with experimental data. It has been found that the proposed model predicted the stress-strain curves that were consistent with the experimental data. The proposed model can be implemented in finite element software for engineering design and application.  相似文献   
98.
Cotton fabric was modified with β-cyclodextrin (β-CD) forming inclusion complex to yield color strength, pattern sharpness, and color fastness for ink-jet printing. The modified cotton fabric was confirmed with the presence of new strong absorption peaks around 1713 cm-1 and 1243 cm-1 in FT-IR. β-CD had been covalently grafted on cotton fabric via the esterification reaction of citric acid (CTR) with cellulose and β-CD. The results indicated that printing performances of the ink-jet printed fabric were enhanced through β-CD modification. The K/S value was enhanced from 4.21 to 6.72, the width of printed line was decreased from 1.48 mm to 1.25 mm, and the color fastness was improved to 3-4 level. These improvements were due to the truncated cone structure of β-CD, which can form inclusions with water-based pigment. Meanwhile, the crease recovery performance was also improved with the aid of CTR. A comparison between the unmodified and modified cotton fabric suggested that the crease recovery angle of β-CD modified cotton fabric was increased by 25.0 % in the warp direction. Therefore, printing performance and crease recovery performance of β-CD modified and water-based pigment printed cotton fabric were enhanced remarkably.  相似文献   
99.
Madder is a natural colorant which is commonly applied with metal salts as a mordant to improve its affinity to fibers and color fastness. Madder produces an insoluble complex or lake in the presence of metal ions on mordanted fabric. In this study, wool fabric was pretreated with AgNPs (silver nanoparticles) as a mordant, then dyed with madder. The wool fabric samples were examined by scanning electron microscopy (SEM) and their colorimetric characteristics were evaluated. The formation of spherical silver nanoparticle was confirmed using UV-Visible spectroscopy, SEM images, and elemental analysis. The average size of synthesized silver nanoparticles on the surface of wool fibers is around 73 nm. The dyed wool samples were pretreated with different concentration of Ag+ ions or AgNPs, which showed higher color strength value compared to untreated dyed wool fabric. This pretreatment also presented good antibacterial activity.  相似文献   
100.
A straightforward approach was proposed to modify cotton fabric for oil/water separation based on musselinspired reaction. The poly(DMA-Octadecyl acrylate) was designed to contain key chemical constituents present in mussel adhesive proteins by free radical polymerization of dopamine hydrochloride and octadecyl acrylate, which strongly adsorbed to fabric substrates, providing a special surface for fabric. The chemical structure, surface topography, and surface wettability of the fabric were characterized. The results showed that as-prepared cotton fabric displayed a high CA of >150° when dripped water droplets were on the modified fabric surface, and the oil contact angle (OCA) was close to 0°, it had excellent potential to be used in practical applications and has created a new method of fabric modification for oil/water separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号