首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57394篇
  免费   3108篇
  国内免费   39篇
林业   3090篇
农学   1681篇
基础科学   252篇
  7001篇
综合类   11248篇
农作物   2150篇
水产渔业   2869篇
畜牧兽医   27928篇
园艺   747篇
植物保护   3575篇
  2019年   618篇
  2018年   909篇
  2017年   934篇
  2016年   856篇
  2015年   787篇
  2014年   940篇
  2013年   2006篇
  2012年   1933篇
  2011年   2217篇
  2010年   1353篇
  2009年   1395篇
  2008年   2090篇
  2007年   2119篇
  2006年   1974篇
  2005年   1861篇
  2004年   1740篇
  2003年   1703篇
  2002年   1644篇
  2001年   1602篇
  2000年   1533篇
  1999年   1272篇
  1998年   503篇
  1997年   520篇
  1996年   512篇
  1995年   565篇
  1994年   511篇
  1993年   520篇
  1992年   949篇
  1991年   948篇
  1990年   937篇
  1989年   945篇
  1988年   887篇
  1987年   921篇
  1986年   912篇
  1985年   925篇
  1984年   747篇
  1983年   673篇
  1982年   462篇
  1979年   667篇
  1978年   552篇
  1977年   475篇
  1976年   470篇
  1975年   510篇
  1974年   698篇
  1973年   619篇
  1972年   680篇
  1971年   679篇
  1970年   602篇
  1969年   590篇
  1967年   511篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The characterization of herbal materials is a significant challenge to analytical chemists. Goldenseal (Hydrastis canadensis L.), which has been chosen for toxicity evaluation by NIEHS, is among the top 15 herbal supplements currently on the market and contains a complex mixture of indigenous components ranging from carbohydrates and amino acids to isoquinoline alkaloids. One key component of herbal supplement production is botanical authentication, which is also recommended prior to initiation of efficacy or toxicological studies. To evaluate material available to consumers, goldenseal root powder was obtained from three commercial suppliers and a strategy was developed for characterization and comparison that included Soxhlet extraction, HPLC, GC-MS, and LC-MS analyses. HPLC was used to determine the weight percentages of the goldenseal alkaloids berberine, hydrastine, and canadine in the various extract residues. Palmatine, an isoquinoline alkaloid native to Coptis spp. and other common goldenseal adulterants, was also quantitated using HPLC. GC-MS was used to identify non-alkaloid constituents in goldenseal root powder, whereas LC-MS was used to identify alkaloid components. After review of the characterization data, it was determined that alkaloid content was the best biomarker for goldenseal. A 20-min ambient extraction method for the determination of alkaloid content was also developed and used to analyze the commercial material. All three lots of purchased material contained goldenseal alkaloids hydrastinine, berberastine, tetrahydroberberastine, canadaline, berberine, hydrastine, and canadine. Material from a single supplier also contained palmatine, coptisine, and jatrorrhizine, thus indicating that the material was not pure goldenseal. Comparative data for three commercial sources of goldenseal root powder are presented.  相似文献   
992.
In order to understand the efficiency of residue-N use and to estimate the minimum input required to obtain a reasonable level of crop response, it is important to quantify the fate of the applied organic-N. The recovery of N from 15N-labelled Crotalaria juncea was followed in the soil and the succeeding maize crop. Apparent N recovery (ANR) by maize from unlabelled Crotalaria juncea, Crotalaria retusa, Calopogonium mucunoides, Mucuna pruriens and mineral fertilizer at three locations were also evaluated. The maize crop recovered 4.7% and 7.3% of the 15N-labelled C. juncea-N at 42 days after sowing (DAS) and at final harvest, respectively. The corresponding 15N recovery from the soil was 92.4% and 58.5%. The highest mean ANR of 57.4% was with mineral fertilizer, whereas the mean ANR of 14.3% from C. retusa was the lowest. A large pool substitution and added-N interaction effect was observed when comparing N recovery from the labelled and unlabelled C. juncea. The amount of residue-N accounted for by the isotope dilution method at 42 DAS was 97.1% and at final harvest 65.8%. The large residue-N recovery in the soil organic-N pool explains the residual effect usually observed with organic residue application.  相似文献   
993.
Previously, there has not been any in situ conservation sites for crop germplasm within the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Plant Germplasm System (NPGS). Using morphologic and molecular (SSR markers) techniques, we assessed the genetic variation present in populations of rock grape (Vitis rupestris Scheele), a native American grape species, throughout its range. We identified seven in situ conservation sites for rock grape using a strategy based on morphologic and molecular data, taxonomic information, population size and integrity, and landholder commitment. In collaboration with federal and state landholding agencies, we have established the first NPGS in situ conservation sites for American wild relatives of a crop.  相似文献   
994.
Crop responses to annual compaction treatments (applied to whole plots) and management treatments to ameliorate compacted soil were determined in a field experiment on a Vertisol. Initially, all treatments except a control were compacted with a 10 Mg axle load on wet soil (26% gravimetric water content compared with a plastic limit of 22%). Annually applied axle loads of 10 and 6 Mg on wet soil (25–32% soil water) tended to reduce seedling emergence, grain yield (wheat, sorghum and maize), soil water storage and crop water use efficiency (WUE). Annual applications of an axle load of 6 Mg on dry soil (<22% soil water) had little effect on crop performance. Mean reductions in the yield of five crops (three wheat, one sorghum and one maize) in comparison with the uncompacted control were 23% or 0.79 Mg ha−1 (10 Mg on wet soil), 13% or 0.44 Mg ha−1 (6 Mg on wet soil) and 1% or 0.03 Mg ha−1 (6 Mg on dry soil). Maize grown in the fifth year of treatment application was most affected by compaction of wet soil, its WUE being reduced from 14.3 to 9.7 kg ha−1 mm−1 in response to an axle load of 10 Mg. Reduced WUE was associated with delayed soil water extraction at depth. A 3-year pasture ley was the most successful amelioration treatment. A wheat and a maize crop grown after the ley outyielded the control by 0.33 and 0.90 Mg ha−1, respectively. So the pasture not only ameliorated the initial compaction damage, with respect to crop performance, but resulted in improvements in two subsequent crops.  相似文献   
995.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   
996.
Marigold flowers are the most important source of carotenoids for application in the food industry. However, the extraction gives almost 50% losses of the carotenoids depending on conditions for silaging, drying, and solvent extraction. In the past decades, macerating enzymes have been successfully applied to improve the extraction yield of valued compounds from natural products. In this work, an alternative extraction process for carotenoids is proposed, consisting of a simultaneous enzymatic treatment and solvent extraction. The proposed process employs milled fresh flowers directly as raw material, eliminating the inefficient silage and drying operations as well as the generation of hard to deal with aqueous effluents present in traditional processes. The process developed was tested at the 80 L scale, where under optimal conditions a carotenoid recovery yield of 97% was obtained.  相似文献   
997.
Abstract. Continuous cultivation of soils of the semiarid tropics has led to significant land degradation. Soil erosion and nutrient loss caused by high runoff volumes have reduced crop yields and contributed to offsite damage. We compared a number of soil management practices (tillage, mulch and perennial/annual rotational based systems) for their potential to improve crop production and land resource protection in an Alfisol of the semiarid tropics of India. Runoff and soil erosion were monitored and surface soil and sediment were analysed for nitrogen and carbon to determine enrichment ratios. Amelioration of soils with organic additions (farmyard manure, rice straw) or rotating perennial pasture with annual crops increased soil carbon and nitrogen contents and reduced runoff, soil erosion and nutrient loss. Soil erosion totalled less than 7 t ha–1, but enrichment ratios were often greater than 2 resulting in up to 27 kg N ha–1 and 178 kg C ha–1 being lost in sediment. Up to an extra 250 mm of water per year infiltrated the soil with organic additions and was available for crop water use or percolation to groundwater. The results show that there are good opportunities for reducing degradation and increasing productivity on farms.  相似文献   
998.
We investigated the effects of fragmentation due to urbanisation on the species composition and functional roles of ants, beetles, spiders, flies and wasps. The study was conducted in 21 fragments of heath and woodland in south-eastern Australia classed as either ‘small’ (? 4 km2) or ‘large’ (? 80 km2). Arthropods were pitfall-trapped and identified to family or genus and morphospecies and microhabitat characteristics were recorded. Large fragments did not support more species per unit area than small fragments for most arthropods, although there were more species of ants per sampling unit in small than large woodland fragments, mainly due to a higher frequency of generalist species in smaller fragments. Large and small habitat fragments contained different assemblages of spiders, wasps and ants, indicating that predators and parasitoids are affected more strongly than other trophic groups. Arthropod assemblages within larger fragments where grids were furthest apart were less similar than those within smaller fragments where grids were closer together in woodland, but not in heath. The responses of arthropods to fragmentation suggest that, in addition to effects of reduced area and proximity to the urban matrix, changes in fire regimes and the degradation of habitats resulting from urbanisation, may have a role in altering arthropod assemblages, particularly affecting those species belonging to higher trophic levels. Management goals for urban remnants should identify mechanisms for controlling fire and anthropogenic disturbance such that they closely resemble the levels of these factors in larger fragments.  相似文献   
999.
1 The Problem  One of the major problems facing risk assessment at polluted industrial sites and military bases is subsurface contamination by non-aqueous phase-liquids (NAPLs), since tracing the extent of a NAPL plume using conventional methods (drive point profiling) is usually associated with difficulties. In an effort to trace subsurface contamination as precisely as possible, monitoring points are placed in the area that might be affected by contaminants, and groundwater and soil samples are taken to the laboratory for analysis. However, the final number of monitoring points is hardly ever sufficient for distinctive contamination mapping, and this may ultimately result in an unsuitable remediation action being taken. 2 Objectives  To obtain a more detailed image of a subsurface NAPL plume and, hence, to facilitate remediation measures that are best suited for the site in question, a denser network of monitoring points is desirable. The aim of the investigation described in this paper was therefore to develop a new detection method for subsurface NAPL contamination, which is based on an easily accessibleindicator for NAPLs rather than on the analysis of soil and groundwater samples taken at the site. Based on the good solubility of radon in NAPLs, the idea was put forward that subsurface NAPL contamination should have an influence on the natural radon concentration of the soil gas. Provided this effect is significant, it would be possible to carry out a straightforward radon survey on an appropriate sampling grid covering the suspected site and thus enabling the NAPL contamination to be detected by the localization of anomalous low radon concentrations in the soil. The overall aim of the investigation was to assess the general suitability of the soil-gas radon concentration as an indirect tracer for NAPL contamination in the ground. 3 Methods  The partitioning coefficient KNAPL/air is one of the most influential parameters governing the decrease of the radon concentration in the soil gas in the presence of a subsurface NAPL contamination. Since NAPL mixtures such as gasoline, diesel fuel and paraffin are among the most important NAPLs regarding remediation activities, laboratory experiments were performed to determine the radon-partitioning coefficient for these three NAPL mixtures. Field experiments were carried out as well. The aim of the field experiments was to test the use of the soil-gas radon concentration as a tracer for NAPL contamination on-site. For the field experiments, each site was covered with a suitable grid of soil gas sampling points. Finally, the lateral radon distribution pattern achieved on each of the sites was compared to the respective findings of the earlier research performed by conventional means. 4 Results and Discussion  The results of the laboratory experiments clearly show a very strong affinity of radon to the NAPL mixtures examined. The partitioning coefficients achieved correspond to those published for pure NAPLs (Clever 1979) and are thus in the expected range. The results of the field experiments showed that the minimum radon concentrations detected match the respective NAPL plumes traced previously. 5 Conclusions  Both the results of the lab experiments and the on-site findings demonstrate that the soil-gas radon concentration can be used as an indicator for subsurface NAPL contamination. The investigation showed that NAPL-contaminated soil volumes give rise to anomalous low soil-gas radon concentrations in the close vicinity of the contamination. The reason for this decrease in the soil-gas radon concentration is the good solubility of radon in NAPLs, which enables the NAPLs to accumulate and ‘trap’ part of the radon available in the soil pores. 6 Recommendations and Outlook  Further research is required into contamination with rather volatile NAPLs such as BTEX. Further research is also needed to examine whether it is possible to not only localize a NAPL plume, but also to obtain some quantitative information about the subsurface NAPL contamination. The authors also believe that additional investigations should be carried out to study the ability of the method to not just localize a NAPL contamination, but also to monitor on-site, clean-up measures.  相似文献   
1000.
Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax   总被引:10,自引:0,他引:10  
Cadmium (Cd) level in nonoilseed sunflower (Helianthus annuus L.), flax (Linum usitatissimum L.), and durum wheat (Triticum turgidum L. var. durum) grown on uncontaminated, alkaline soils has exceeded limits established in Northern Europe. Separate field experiments were conducted to investigate variability of grain Cd levels among sunflower, durum wheat and flax germplasm, and to seek an efficient screening method for future breeding. There were large variations in leaf Cd concentration among 200 sunflower lines. These lines performed more consistently for Cd uptake at the R5 stage than at the V8 stage across 4 locations with markedly differing soils. Cd concentration in V8 leaves was not related to Cd in grain. The positive correlation between R5 leaf Cd and kernel Cd level was obtained from nonoilseed hybrid (Sigco 954) (R2; = 0.74**), and 200 lines (R2 = 0.44**) tested over 4 locations in 2 field trials, respectively. This indicates that an efficient and low cost screening method can be developed for genotype selection, but plants must be grown to the R5 stage. A preliminary evaluation of 30 durum wheat and 74 flax lines indicated large variations in grain Cd level of durum wheat and flax. Grain Cd concentration ranged from 0.11 to 0.34 mg Cd kg-1 DW for durum wheat, and 0.14 to 1.37 mg Cd kg-1 DW for flax, respectively. This variability indicates that breeding for low grain Cd in durum wheat and flax should be feasible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号